These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Microalgae biofilm system as an efficient tool for wastewater remediation and potential bioresources for pharmaceutical product production: an overview. Ugya AY; Chen H; Wang Q Int J Phytoremediation; 2024; 26(1):131-142. PubMed ID: 37382505 [TBL] [Abstract][Full Text] [Related]
23. Investigation of architecture development and phosphate distribution in Chlorella biofilm by complementary microscopy techniques. Osorio JHM; Benettoni P; Schmidt M; Stryhanyuk H; Schmitt-Jansen M; Pinto G; Pollio A; Frunzo L; Lens PNL; Richnow HH; Esposito G; Musat N FEMS Microbiol Ecol; 2019 Apr; 95(4):. PubMed ID: 30848779 [TBL] [Abstract][Full Text] [Related]
24. Microalgae produced during phycoremediation of swine wastewater contains effective bacteriostatic compounds against antibiotic-resistant bacteria. Michelon W; da Silva MLB; Matthiensen A; Silva E; Pilau EJ; de Oliveira Nunes E; Soares HM Chemosphere; 2021 Nov; 283():131268. PubMed ID: 34182646 [TBL] [Abstract][Full Text] [Related]
25. Microalgae biofilm formation and antioxidant responses to stress induce by Lemna minor L., Chlorella vulgaris, and Aphanizomenon flos-aquae. Ugya AY; Ari HA; Hua X Ecotoxicol Environ Saf; 2021 Sep; 221():112468. PubMed ID: 34198191 [TBL] [Abstract][Full Text] [Related]
26. Simultaneous nutrient removal and biomass/lipid production by Chlorella sp. in seafood processing wastewater. Gao F; Peng YY; Li C; Yang GJ; Deng YB; Xue B; Guo YM Sci Total Environ; 2018 Nov; 640-641():943-953. PubMed ID: 30021327 [TBL] [Abstract][Full Text] [Related]
27. Tribonema sp. and Chlorella zofingiensis co-culture to treat swine wastewater diluted with fishery wastewater to facilitate harvest. Cheng P; Cheng JJ; Cobb K; Zhou C; Zhou N; Addy M; Chen P; Yan X; Ruan R Bioresour Technol; 2020 Feb; 297():122516. PubMed ID: 31830716 [TBL] [Abstract][Full Text] [Related]
28. Effect of organic carbon to nitrogen ratio in wastewater on growth, nutrient uptake and lipid accumulation of a mixotrophic microalgae Chlorella sp. Gao F; Yang HL; Li C; Peng YY; Lu MM; Jin WH; Bao JJ; Guo YM Bioresour Technol; 2019 Jun; 282():118-124. PubMed ID: 30852331 [TBL] [Abstract][Full Text] [Related]
29. Isolation of a freshwater microalgae and its application for the treatment of wastewater and obtaining fatty acids from tilapia cultivation. Morando-Grijalva CA; Vázquez-Larios AL; Alcántara-Hernández RJ; Ortega-Clemente LA; Robledo-Narváez PN Environ Sci Pollut Res Int; 2020 Aug; 27(23):28575-28584. PubMed ID: 32212076 [TBL] [Abstract][Full Text] [Related]
30. Effects of three surfactants on co-conversion of endogenous carbon and nitrogen of dairy wastewater in mesophilic hydrolytic acidification coupled microalgae culture system. Wang B; Qin L; Huang D; Chen H; Feng P; Zhu S; Wang Z Environ Sci Pollut Res Int; 2022 May; 29(21):32227-32237. PubMed ID: 35013953 [TBL] [Abstract][Full Text] [Related]
31. Microalgae cultivation for the treatment of anaerobically digested municipal centrate (ADMC) and anaerobically digested abattoir effluent (ADAE). Vadiveloo A; Foster L; Kwambai C; Bahri PA; Moheimani NR Sci Total Environ; 2021 Jun; 775():145853. PubMed ID: 33621869 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of the dynamics of microalgae population structure and process performance during piggery wastewater treatment in algal-bacterial photobioreactors. García D; Posadas E; Blanco S; Acién G; García-Encina P; Bolado S; Muñoz R Bioresour Technol; 2018 Jan; 248(Pt B):120-126. PubMed ID: 28651871 [TBL] [Abstract][Full Text] [Related]
33. Mixotrophic Microalgae Biofilm: A Novel Algae Cultivation Strategy for Improved Productivity and Cost-efficiency of Biofuel Feedstock Production. Roostaei J; Zhang Y; Gopalakrishnan K; Ochocki AJ Sci Rep; 2018 Aug; 8(1):12528. PubMed ID: 30131525 [TBL] [Abstract][Full Text] [Related]
34. Species and material considerations in the formation and development of microalgal biofilms. Irving TE; Allen DG Appl Microbiol Biotechnol; 2011 Oct; 92(2):283-94. PubMed ID: 21655988 [TBL] [Abstract][Full Text] [Related]
35. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Min M; Wang L; Li Y; Mohr MJ; Hu B; Zhou W; Chen P; Ruan R Appl Biochem Biotechnol; 2011 Sep; 165(1):123-37. PubMed ID: 21494756 [TBL] [Abstract][Full Text] [Related]
36. Improving biomass yields of microalgae biofilm by coculturing two microalgae species via forming biofilms with uniform microstructures and small cell-clusters. Wang Y; Zhang X; Wu Y; Sun G; Jiang Z; Hao S; Ye S; Zhang H; Zhang F; Zhang X Bioresour Technol; 2024 Feb; 393():130052. PubMed ID: 37995875 [TBL] [Abstract][Full Text] [Related]
37. An eco-friendly strategy for dairy wastewater remediation with high lipid microalgae-bacterial biomass production. Biswas T; Bhushan S; Prajapati SK; Ray Chaudhuri S J Environ Manage; 2021 May; 286():112196. PubMed ID: 33639423 [TBL] [Abstract][Full Text] [Related]
38. Lutein: A potential antibiofilm and antiquorum sensing molecule from green microalga Chlorella pyrenoidosa. Sampathkumar SJ; Srivastava P; Ramachandran S; Sivashanmugam K; Gothandam KM Microb Pathog; 2019 Oct; 135():103658. PubMed ID: 31398531 [TBL] [Abstract][Full Text] [Related]
39. Effect of free ammonia shock on Chlorella sp. in wastewater: Concentration-dependent activity response and enhanced settleability. Chen Z; Qiu S; Li M; Xu S; Ge S Water Res; 2022 Nov; 226():119305. PubMed ID: 36332297 [TBL] [Abstract][Full Text] [Related]
40. Microalgae recycling improves biomass recovery from wastewater treatment high rate algal ponds. Gutiérrez R; Ferrer I; González-Molina A; Salvadó H; García J; Uggetti E Water Res; 2016 Dec; 106():539-549. PubMed ID: 27771604 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]