BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 29990770)

  • 1. Comparative phosphoproteome analysis upon ethylene and abscisic acid treatment in Glycine max leaves.
    Gupta R; Min CW; Meng Q; Agrawal GK; Rakwal R; Kim ST
    Plant Physiol Biochem; 2018 Sep; 130():173-180. PubMed ID: 29990770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Multi-Omics Analysis of Glycine max Leaves Reveals Alteration in Flavonoid and Isoflavonoid Metabolism Upon Ethylene and Abscisic Acid Treatment.
    Gupta R; Min CW; Kramer K; Agrawal GK; Rakwal R; Park KH; Wang Y; Finkemeier I; Kim ST
    Proteomics; 2018 Apr; 18(7):e1700366. PubMed ID: 29457974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoproteome data from abscisic acid and ethylene treated
    Gupta R; Min CW; Meng Q; Jun TH; Agrawal GK; Rakwal R; Kim ST
    Data Brief; 2018 Oct; 20():516-520. PubMed ID: 30191164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abscisic acid antagonizes ethylene-induced hyponastic growth in Arabidopsis.
    Benschop JJ; Millenaar FF; Smeets ME; van Zanten M; Voesenek LA; Peeters AJ
    Plant Physiol; 2007 Feb; 143(2):1013-23. PubMed ID: 17158582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable isotope metabolic labeling-based quantitative phosphoproteomic analysis of Arabidopsis mutants reveals ethylene-regulated time-dependent phosphoproteins and putative substrates of constitutive triple response 1 kinase.
    Yang Z; Guo G; Zhang M; Liu CY; Hu Q; Lam H; Cheng H; Xue Y; Li J; Li N
    Mol Cell Proteomics; 2013 Dec; 12(12):3559-82. PubMed ID: 24043427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ethylene and abscisic acid upon heterophylly in Ludwigia arcuata (Onagraceae).
    Kuwabara A; Ikegami K; Koshiba T; Nagata T
    Planta; 2003 Oct; 217(6):880-7. PubMed ID: 12844266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of phosphoproteins regulated by abscisic acid in rice leaves.
    He H; Li J
    Biochem Biophys Res Commun; 2008 Jul; 371(4):883-8. PubMed ID: 18468508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco.
    Zhai Y; Wang Y; Li Y; Lei T; Yan F; Su L; Li X; Zhao Y; Sun X; Li J; Wang Q
    Gene; 2013 Jan; 513(1):174-83. PubMed ID: 23111158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis.
    Tanaka Y; Sano T; Tamaoki M; Nakajima N; Kondo N; Hasezawa S
    Plant Physiol; 2005 Aug; 138(4):2337-43. PubMed ID: 16024687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super-elevated CO2 interferes with stomatal response to ABA and night closure in soybean (Glycine max).
    Levine LH; Richards JT; Wheeler RM
    J Plant Physiol; 2009 Jun; 166(9):903-13. PubMed ID: 19131142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoproteomic Approaches to Evaluate ABA Signaling.
    Yamashita K; Umezawa T
    Methods Mol Biol; 2022; 2462():163-179. PubMed ID: 35152388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance.
    Arraes FB; Beneventi MA; Lisei de Sa ME; Paixao JF; Albuquerque EV; Marin SR; Purgatto E; Nepomuceno AL; Grossi-de-Sa MF
    BMC Plant Biol; 2015 Sep; 15():213. PubMed ID: 26335593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exo-ethylene application mitigates waterlogging stress in soybean (Glycine max L.).
    Kim Y; Seo CW; Khan AL; Mun BG; Shahzad R; Ko JW; Yun BW; Park SK; Lee IJ
    BMC Plant Biol; 2018 Oct; 18(1):254. PubMed ID: 30348086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress.
    Hu X; Li N; Wu L; Li C; Li C; Zhang L; Liu T; Wang W
    Sci Rep; 2015 Oct; 5():15626. PubMed ID: 26503333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress.
    Yin X; Sakata K; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5618-34. PubMed ID: 25316100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative proteomics of nuclear phosphoproteins in the root tip of soybean during the initial stages of flooding stress.
    Yin X; Komatsu S
    J Proteomics; 2015 Apr; 119():183-95. PubMed ID: 25724727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis.
    Luo X; Chen Z; Gao J; Gong Z
    Plant J; 2014 Jul; 79(1):44-55. PubMed ID: 24738778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comprehensive Proteomic Survey of ABA-Induced Protein Phosphorylation in Rice (Oryza sativa L.).
    Qiu J; Hou Y; Wang Y; Li Z; Zhao J; Tong X; Lin H; Wei X; Ao H; Zhang J
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28054942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses.
    Yang Z; Tian L; Latoszek-Green M; Brown D; Wu K
    Plant Mol Biol; 2005 Jul; 58(4):585-96. PubMed ID: 16021341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis.
    Li Z; Zhang L; Yu Y; Quan R; Zhang Z; Zhang H; Huang R
    Plant J; 2011 Oct; 68(1):88-99. PubMed ID: 21645149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.