These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 29990774)
1. Spatial relationship between the field-measured ambient gamma dose equivalent rate and geological conditions in a granitic area, Velence Hills, Hungary: An application of digital spatial analysis methods. Torres SB; Petrik A; Szabó KZ; Jordan G; Yao J; Szabó C J Environ Radioact; 2018 Dec; 192():267-278. PubMed ID: 29990774 [TBL] [Abstract][Full Text] [Related]
2. Spatial analysis of ambient gamma dose equivalent rate data by means of digital image processing techniques. Szabó KZ; Jordan G; Petrik A; Horváth Á; Szabó C J Environ Radioact; 2017 Jan; 166(Pt 2):309-320. PubMed ID: 27491859 [TBL] [Abstract][Full Text] [Related]
3. Mapping the geogenic radon potential: methodology and spatial analysis for central Hungary. Szabó KZ; Jordan G; Horváth Á; Szabó C J Environ Radioact; 2014 Mar; 129():107-20. PubMed ID: 24412775 [TBL] [Abstract][Full Text] [Related]
4. Assessment of lithogenic radioactivity in the Euganean Hills magmatic district (NE Italy). Tositti L; Cinelli G; Brattich E; Galgaro A; Mostacci D; Mazzoli C; Massironi M; Sassi R J Environ Radioact; 2017 Jan; 166(Pt 2):259-269. PubMed ID: 27452912 [TBL] [Abstract][Full Text] [Related]
5. PRE-ANTHROPIC AND PRESENT OUTDOOR GAMMA EQUIVALENT DOSE RATE OF THE HISTORIC CENTER OF ROME (ITALY). Daniela G; Carloni S; Voltaggio M; Di Lisa GA Radiat Prot Dosimetry; 2019 Dec; 187(4):518-534. PubMed ID: 31702770 [TBL] [Abstract][Full Text] [Related]
6. Geographically weighted regression and geostatistical techniques to construct the geogenic radon potential map of the Lazio region: A methodological proposal for the European Atlas of Natural Radiation. Ciotoli G; Voltaggio M; Tuccimei P; Soligo M; Pasculli A; Beaubien SE; Bigi S J Environ Radioact; 2017 Jan; 166(Pt 2):355-375. PubMed ID: 27241368 [TBL] [Abstract][Full Text] [Related]
7. Radiological mapping of Kelantan, Malaysia, using terrestrial radiation dose rate. Garba NN; Ramli AT; Saleh MA; Sanusi SM; Gabdo HT Isotopes Environ Health Stud; 2016 Jun; 52(3):214-8. PubMed ID: 26540360 [TBL] [Abstract][Full Text] [Related]
8. Prediction of terrestrial gamma dose rate based on geological formations and soil types in the Johor State, Malaysia. Saleh MA; Ramli AT; bin Hamzah K; Alajerami Y; Moharib M; Saeed I J Environ Radioact; 2015 Oct; 148():111-22. PubMed ID: 26142818 [TBL] [Abstract][Full Text] [Related]
9. Mapping geogenic radon potential by regression kriging. Pásztor L; Szabó KZ; Szatmári G; Laborczi A; Horváth Á Sci Total Environ; 2016 Feb; 544():883-91. PubMed ID: 26706761 [TBL] [Abstract][Full Text] [Related]
10. Environmental radioactivity in the UK: the airborne geophysical view of dose rate estimates. Beamish D J Environ Radioact; 2014 Dec; 138():249-63. PubMed ID: 25264940 [TBL] [Abstract][Full Text] [Related]
11. Assessment of natural radioactivity levels in rocks and their relationships with the geological structure of Johor state, Malaysia. Alnour IA; Wagiran H; Ibrahim N; Hamzah S; Elias MS; Laili Z; Omar M Radiat Prot Dosimetry; 2014 Jan; 158(2):201-7. PubMed ID: 23965286 [TBL] [Abstract][Full Text] [Related]
12. The assessment of local geological factors for the construction of a Geogenic Radon Potential map using regression kriging. A case study from the Euganean Hills volcanic district (Italy). Coletti C; Ciotoli G; Benà E; Brattich E; Cinelli G; Galgaro A; Massironi M; Mazzoli C; Mostacci D; Morozzi P; Mozzi P; Nava J; Ruggiero L; Sciarra A; Tositti L; Sassi R Sci Total Environ; 2022 Feb; 808():152064. PubMed ID: 34863751 [TBL] [Abstract][Full Text] [Related]
13. RADIOLOGICAL HAZARD INDICES OF GRANITIC ROCKS USED FOR THE CONSTRUCTION OF BUILDINGS FROM NUBA MOUNTAINS SUDAN. Fadol N; Idriss H; Salih I; Ragab NA; Osman S; Sam AK Radiat Prot Dosimetry; 2018 Jun; 179(4):364-369. PubMed ID: 29444310 [TBL] [Abstract][Full Text] [Related]
14. Assessment of radiological hazard parameters due to natural radioactivity in soils from granite-rich regions in Kütahya Province, Turkey. Sahin L; Hafızoğlu N; Çetinkaya H; Manisa K; Bozkurt E; Biçer A Isotopes Environ Health Stud; 2017 May; 53(2):212-221. PubMed ID: 27465510 [TBL] [Abstract][Full Text] [Related]
15. Natural radioactivity measurements in Pahang State, Malaysia. Gabdo HT; Ramli AT; Saleh MA; Garba NN; Sanusi M Isotopes Environ Health Stud; 2016 Jun; 52(3):298-308. PubMed ID: 26999725 [TBL] [Abstract][Full Text] [Related]
16. Radiological survey of the covered and uncovered drilling mud depository. Jónás J; Somlai J; Csordás A; Tóth-Bodrogi E; Kovács T J Environ Radioact; 2018 Aug; 188():30-37. PubMed ID: 29103632 [TBL] [Abstract][Full Text] [Related]
17. Garba NN; Abdulkadir M; Nasiru R; Saleh MA; Bello S; Khandaker MU; Che Abdullah CA; Kankara UM Isotopes Environ Health Stud; 2023 Mar; 59(1):112-125. PubMed ID: 36735938 [TBL] [Abstract][Full Text] [Related]
18. STUDY OF NATURAL RADIOACTIVITY (226Ra, 232Th AND 40K) IN SOIL SAMPLES FOR THE ASSESSMENT OF AVERAGE EFFECTIVE DOSE AND RADIATION HAZARDS. Bangotra P; Mehra R; Kaur K; Jakhu R Radiat Prot Dosimetry; 2016 Oct; 171(2):277-281. PubMed ID: 27056323 [TBL] [Abstract][Full Text] [Related]
19. Mapping natural radioactivity of soils in the eastern Canary Islands. Arnedo MA; Rubiano JG; Alonso H; Tejera A; González A; González J; Gil JM; Rodríguez R; Martel P; Bolivar JP J Environ Radioact; 2017 Jan; 166(Pt 2):242-258. PubMed ID: 27633792 [TBL] [Abstract][Full Text] [Related]
20. The predictive power of airborne gamma ray survey data on the locations of domestic radon hazards in Norway: A strong case for utilizing airborne data in large-scale radon potential mapping. Smethurst MA; Watson RJ; Baranwal VC; Rudjord AL; Finne I J Environ Radioact; 2017 Jan; 166(Pt 2):321-340. PubMed ID: 27105766 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]