These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 29990782)
21. A Flow Imaging Microscopy-Based Method Using Mass-to-Volume Ratio to Derive the Porosity of PLGA Microparticles. Sediq AS; Waasdorp SKD; Nejadnik MR; van Beers MMC; Meulenaar J; Verrijk R; Jiskoot W J Pharm Sci; 2017 Nov; 106(11):3378-3384. PubMed ID: 28755925 [TBL] [Abstract][Full Text] [Related]
22. Surface-functionalized, pH-responsive poly(lactic-co-glycolic acid)-based microparticles for intranasal vaccine delivery: Effect of surface modification with chitosan and mannan. Li Z; Xiong F; He J; Dai X; Wang G Eur J Pharm Biopharm; 2016 Dec; 109():24-34. PubMed ID: 27569030 [TBL] [Abstract][Full Text] [Related]
23. Controlled Release of Dexamethasone From an Intravitreal Delivery System Using Porous Silicon Dioxide. Hou H; Wang C; Nan K; Freeman WR; Sailor MJ; Cheng L Invest Ophthalmol Vis Sci; 2016 Feb; 57(2):557-66. PubMed ID: 26882530 [TBL] [Abstract][Full Text] [Related]
24. Osteogenic evaluation of collagen membrane containing drug-loaded polymeric microparticles in a rat calvarial defect model. Piao ZG; Kim JS; Son JS; Lee SY; Fang XH; Oh JS; You JS; Kim SG Tissue Eng Part A; 2014 Dec; 20(23-24):3322-31. PubMed ID: 24967649 [TBL] [Abstract][Full Text] [Related]
25. Long-term controlled release of PLGA microparticles containing antidepressant mirtazapine. Vysloužil J; Doležel P; Kejdušová M; Košťál V; Beneš L; Dvořáčková K Pharm Dev Technol; 2016 Mar; 21(2):214-21. PubMed ID: 25495857 [TBL] [Abstract][Full Text] [Related]
26. Influence of the test method on in vitro drug release from intravitreal model implants containing dexamethasone or fluorescein sodium in poly (d,l-lactide-co-glycolide) or polycaprolactone. Stein S; Auel T; Kempin W; Bogdahn M; Weitschies W; Seidlitz A Eur J Pharm Biopharm; 2018 Jun; 127():270-278. PubMed ID: 29490233 [TBL] [Abstract][Full Text] [Related]
27. Does PLGA microparticle swelling control drug release? New insight based on single particle swelling studies. Gasmi H; Danede F; Siepmann J; Siepmann F J Control Release; 2015 Sep; 213():120-127. PubMed ID: 26150116 [TBL] [Abstract][Full Text] [Related]
28. Controlled release of drug and better bioavailability using poly(lactic acid-co-glycolic acid) nanoparticles. Pandey SK; Patel DK; Maurya AK; Thakur R; Mishra DP; Vinayak M; Haldar C; Maiti P Int J Biol Macromol; 2016 Aug; 89():99-110. PubMed ID: 27112980 [TBL] [Abstract][Full Text] [Related]
29. PLGA/mesoporous silica hybrid structure for controlled drug release. Xue JM; Shi M J Control Release; 2004 Aug; 98(2):209-17. PubMed ID: 15262413 [TBL] [Abstract][Full Text] [Related]
30. Sustained release of TGF-β1 from biodegradable microparticles prepared by a new green process in CO2 medium. Swed A; Cordonnier T; Dénarnaud A; Boyer C; Guicheux J; Weiss P; Boury F Int J Pharm; 2015 Sep; 493(1-2):357-65. PubMed ID: 26209069 [TBL] [Abstract][Full Text] [Related]
31. Controlled release behaviour of protein-loaded microparticles prepared via coaxial or emulsion electrospray. Wang Y; Yang X; Liu W; Zhang F; Cai Q; Deng X J Microencapsul; 2013; 30(5):490-7. PubMed ID: 23346923 [TBL] [Abstract][Full Text] [Related]
32. Critical attributes of formulation and of elaboration process of PLGA-protein microparticles. Martín-Sabroso C; Fraguas-Sánchez AI; Aparicio-Blanco J; Cano-Abad MF; Torres-Suárez AI Int J Pharm; 2015 Mar; 480(1-2):27-36. PubMed ID: 25578370 [TBL] [Abstract][Full Text] [Related]
33. Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems. Gasmi H; Siepmann F; Hamoudi MC; Danede F; Verin J; Willart JF; Siepmann J Int J Pharm; 2016 Nov; 514(1):189-199. PubMed ID: 27543353 [TBL] [Abstract][Full Text] [Related]
34. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release. Thote AJ; Gupta RB Nanomedicine; 2005 Mar; 1(1):85-90. PubMed ID: 17292062 [TBL] [Abstract][Full Text] [Related]
35. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Kim DH; Martin DC Biomaterials; 2006 May; 27(15):3031-7. PubMed ID: 16443270 [TBL] [Abstract][Full Text] [Related]
36. The anti-melanoma efficiency of the intratumoral injection of cucurbitacin-loaded sustained-release carriers: a PLGA particle system. Jianbo G; Xue L; Hongdan Y; Zhaohui T; Xing T; Chenchen C; Jinghua X; Hui X J Pharm Sci; 2013 Aug; 102(8):2550-63. PubMed ID: 23729371 [TBL] [Abstract][Full Text] [Related]
37. Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model. Ayalasomayajula SP; Kompella UB Eur J Pharmacol; 2005 Mar; 511(2-3):191-8. PubMed ID: 15792788 [TBL] [Abstract][Full Text] [Related]
38. Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine. Bae SE; Son JS; Park K; Han DK J Control Release; 2009 Jan; 133(1):37-43. PubMed ID: 18838089 [TBL] [Abstract][Full Text] [Related]
39. Engineering shape-defined PLGA microPlates for the sustained release of anti-inflammatory molecules. Di Francesco M; Primavera R; Summa M; Pannuzzo M; Di Francesco V; Di Mascolo D; Bertorelli R; Decuzzi P J Control Release; 2020 Mar; 319():201-212. PubMed ID: 31899267 [TBL] [Abstract][Full Text] [Related]
40. Injectable PLGA based colloidal gels for zero-order dexamethasone release in cranial defects. Wang Q; Wang J; Lu Q; Detamore MS; Berkland C Biomaterials; 2010 Jun; 31(18):4980-6. PubMed ID: 20303585 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]