These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 29990914)

  • 1. Meta-analysis of non-reactive phosphorus in water, wastewater, and sludge, and strategies to convert it for enhanced phosphorus removal and recovery.
    Venkiteshwaran K; McNamara PJ; Mayer BK
    Sci Total Environ; 2018 Dec; 644():661-674. PubMed ID: 29990914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation and fate of non-reactive phosphorus (NRP) in enhanced biological phosphorus removal process with sidestream phosphorus recovery.
    Li X; Shen S; Xu Y; Guo T; Hongliang D; Lu X
    Sci Total Environ; 2022 Sep; 839():156275. PubMed ID: 35644401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electro-oxidation to convert dissolved organic nitrogen and soluble non-reactive phosphorus to more readily removable and recoverable forms.
    Mallick SP; Ryan DR; Venkiteshwaran K; McNamara PJ; Mayer BK
    Chemosphere; 2021 Sep; 279():130876. PubMed ID: 34134436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An economic evaluation of phosphorus recovery as struvite from digester supernatant.
    Shu L; Schneider P; Jegatheesan V; Johnson J
    Bioresour Technol; 2006 Nov; 97(17):2211-6. PubMed ID: 16364632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003).
    de-Bashan LE; Bashan Y
    Water Res; 2004 Nov; 38(19):4222-46. PubMed ID: 15491670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the potential of sludge dewatering liquors to recover nutrients as struvite biominerals.
    Simoes F; Colston R; Rosa-Fernandes C; Vale P; Stephenson T; Soares A
    Environ Sci Ecotechnol; 2020 Jul; 3():100052. PubMed ID: 36159601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatability and fate of various phosphorus fractions in different wastewater treatment processes.
    Gu AZ; Liu L; Neethling JB; Stensel HD; Murthy S
    Water Sci Technol; 2011; 63(4):804-10. PubMed ID: 21330731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and capacities of non-reactive phosphorus (NRP) sorption to crushed autoclaved aerated concrete (CAAC).
    Shen S; Li X; Geng Z; Lu X
    J Environ Sci (China); 2023 May; 127():799-810. PubMed ID: 36522107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies.
    Egle L; Rechberger H; Krampe J; Zessner M
    Sci Total Environ; 2016 Nov; 571():522-42. PubMed ID: 27453138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorus recycling potential assessment by a biological test applied to wastewater sludge.
    Braak E; Auby S; Piveteau S; Guilayn F; Daumer ML
    Environ Technol; 2016; 37(11):1398-407. PubMed ID: 26786893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutrient release, recovery and removal from waste sludge of a biological nutrient removal system.
    Wang Y; Zheng SJ; Pei LY; Ke L; Peng DC; Xia SQ
    Environ Technol; 2014; 35(21-24):2734-42. PubMed ID: 25176308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus recovery--an overview of potentials and possibilities.
    Balmér P
    Water Sci Technol; 2004; 49(10):185-90. PubMed ID: 15259954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus recovery from sewage sludge with a hybrid process of low pressure wet oxidation and nanofiltration.
    Blöcher C; Niewersch C; Melin T
    Water Res; 2012 Apr; 46(6):2009-19. PubMed ID: 22325934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can wastewater feed cities? Determining the feasibility and environmental burdens of struvite recovery and reuse for urban regions.
    Rufí-Salís M; Brunnhofer N; Petit-Boix A; Gabarrell X; Guisasola A; Villalba G
    Sci Total Environ; 2020 Oct; 737():139783. PubMed ID: 32516664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acidified and ultrafiltered recovered coagulants from water treatment works sludge for removal of phosphorus from wastewater.
    Keeley J; Smith AD; Judd SJ; Jarvis P
    Water Res; 2016 Jan; 88():380-388. PubMed ID: 26517789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel approach for phosphorus recovery and no wasted sludge in enhanced biological phosphorus removal process with external COD addition.
    Xia CW; Ma YJ; Zhang F; Lu YZ; Zeng RJ
    Appl Biochem Biotechnol; 2014 Jan; 172(2):820-8. PubMed ID: 24122666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a probabilistic modelling approach for evaluation of nitrogen, phosphorus and organic carbon removal efficiency during four successive cycles of aquifer storage and recovery (ASR) in an anoxic carbonate aquifer.
    Vanderzalm JL; Page DW; Barry KE; Dillon PJ
    Water Res; 2013 May; 47(7):2177-89. PubMed ID: 23462726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery potential of German sewage sludge ash.
    Krüger O; Adam C
    Waste Manag; 2015 Nov; 45():400-6. PubMed ID: 25697389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental and resource implications of phosphorus recovery from waste activated sludge.
    Sørensen BL; Dall OL; Habib K
    Waste Manag; 2015 Nov; 45():391-9. PubMed ID: 25792438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.