BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 29990921)

  • 21. Accumulation and effects of sediment-associated silver nanoparticles to sediment-dwelling invertebrates.
    Ramskov T; Forbes VE; Gilliland D; Selck H
    Aquat Toxicol; 2015 Sep; 166():96-105. PubMed ID: 26256765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distinct toxicity of silver nanoparticles and silver nitrate to Daphnia magna in M4 medium and surface water.
    Hu Y; Chen X; Yang K; Lin D
    Sci Total Environ; 2018 Mar; 618():838-846. PubMed ID: 29054648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of silver nanoparticles on the freshwater snail Physa acuta: The role of test media and snails' life cycle stage.
    F Gonçalves S; D Pavlaki M; Lopes R; Hammes J; Gallego-Urrea JA; Hassellöv M; Jurkschat K; Crossley A; Loureiro S
    Environ Toxicol Chem; 2017 Jan; 36(1):243-253. PubMed ID: 27312215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles.
    Stoiber T; Croteau MN; Römer I; Tejamaya M; Lead JR; Luoma SN
    Nanotoxicology; 2015; 9(7):918-27. PubMed ID: 25676617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil.
    Makama S; Piella J; Undas A; Dimmers WJ; Peters R; Puntes VF; van den Brink NW
    Environ Pollut; 2016 Nov; 218():870-878. PubMed ID: 27524251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioavailability of silver from wastewater and planktonic food borne silver nanoparticles in the rainbow trout Oncorhynchus mykiss.
    Zeumer R; Hermsen L; Kaegi R; Kühr S; Knopf B; Schlechtriem C
    Sci Total Environ; 2020 Mar; 706():135695. PubMed ID: 31940723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels.
    Khoshnamvand M; Hao Z; Fadare OO; Hanachi P; Chen Y; Liu J
    Chemosphere; 2020 Nov; 258():127346. PubMed ID: 32544815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels.
    Wang Z; Quik JT; Song L; Van Den Brandhof EJ; Wouterse M; Peijnenburg WJ
    Environ Toxicol Chem; 2015 Jun; 34(6):1239-45. PubMed ID: 25683234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A metabolomic study on the responses of daphnia magna exposed to silver nitrate and coated silver nanoparticles.
    Li L; Wu H; Ji C; van Gestel CA; Allen HE; Peijnenburg WJ
    Ecotoxicol Environ Saf; 2015 Sep; 119():66-73. PubMed ID: 25978415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sunlight-driven reduction of silver ion to silver nanoparticle by organic matter mitigates the acute toxicity of silver to Daphnia magna.
    Zhang Z; Yang X; Shen M; Yin Y; Liu J
    J Environ Sci (China); 2015 Sep; 35():62-68. PubMed ID: 26354693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Response of biochemical biomarkers in the aquatic crustacean Daphnia magna exposed to silver nanoparticles.
    Ulm L; Krivohlavek A; Jurašin D; Ljubojević M; Šinko G; Crnković T; Žuntar I; Šikić S; Vinković Vrček I
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19990-9. PubMed ID: 26296504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toxicity Testing of Silver Nanoparticles in Artificial and Natural Sediments Using the Benthic Organism Lumbriculus variegatus.
    Rajala JE; Mäenpää K; Vehniäinen ER; Väisänen A; Scott-Fordsmand JJ; Akkanen J; Kukkonen JV
    Arch Environ Contam Toxicol; 2016 Oct; 71(3):405-14. PubMed ID: 27406409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Both released silver ions and particulate Ag contribute to the toxicity of AgNPs to earthworm Eisenia fetida.
    Li L; Wu H; Peijnenburg WJ; van Gestel CA
    Nanotoxicology; 2015; 9(6):792-801. PubMed ID: 25387252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution.
    Unrine JM; Colman BP; Bone AJ; Gondikas AP; Matson CW
    Environ Sci Technol; 2012 Jul; 46(13):6915-24. PubMed ID: 22452441
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitivity of freshwater pulmonate snail Lymnaea luteola L., to silver nanoparticles.
    Ali D; Yadav PG; Kumar S; Ali H; Alarifi S; Harrath AH
    Chemosphere; 2014 Jun; 104():134-40. PubMed ID: 24309155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland.
    Lowry GV; Espinasse BP; Badireddy AR; Richardson CJ; Reinsch BC; Bryant LD; Bone AJ; Deonarine A; Chae S; Therezien M; Colman BP; Hsu-Kim H; Bernhardt ES; Matson CW; Wiesner MR
    Environ Sci Technol; 2012 Jul; 46(13):7027-36. PubMed ID: 22463850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toxicity and bioaccumulation of sediment-associated silver nanoparticles in the estuarine polychaete, Nereis (Hediste) diversicolor.
    Cong Y; Banta GT; Selck H; Berhanu D; Valsami-Jones E; Forbes VE
    Aquat Toxicol; 2014 Nov; 156():106-15. PubMed ID: 25179147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of silver nanoparticle acute and chronic effects on freshwater amphipod (Hyalella azteca).
    Kusi J; Maier KJ
    Aquat Toxicol; 2022 Jan; 242():106016. PubMed ID: 34788726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidative stress-mediated apoptosis and genotoxicity induced by silver nanoparticles in freshwater snail Lymnea luteola L.
    Ali D
    Biol Trace Elem Res; 2014 Dec; 162(1-3):333-41. PubMed ID: 25351851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum).
    Sendra M; Yeste MP; Gatica JM; Moreno-Garrido I; Blasco J
    Chemosphere; 2017 Jul; 179():279-289. PubMed ID: 28371711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.