These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 2999105)
21. Purification of a three-subunit ubiquinol-cytochrome c oxidoreductase complex from Paracoccus denitrificans. Yang XH; Trumpower BL J Biol Chem; 1986 Sep; 261(26):12282-9. PubMed ID: 3017970 [TBL] [Abstract][Full Text] [Related]
22. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Turrens JF; Alexandre A; Lehninger AL Arch Biochem Biophys; 1985 Mar; 237(2):408-14. PubMed ID: 2983613 [TBL] [Abstract][Full Text] [Related]
23. Studies on the succinate dehydrogenating system. Isolation and properties of the mitochondrial succinate-ubiquinone reductase. Tushurashvili PR; Gavrikova EV; Ledenev AN; Vinogradov AD Biochim Biophys Acta; 1985 Sep; 809(2):145-59. PubMed ID: 2994719 [TBL] [Abstract][Full Text] [Related]
24. Ubiquinol:cytochrome c oxidoreductase. Effects of inhibitors on reverse electron transfer from the iron-sulfur protein to cytochrome b. Matsuno-Yagi A; Hatefi Y J Biol Chem; 1999 Apr; 274(14):9283-8. PubMed ID: 10092604 [TBL] [Abstract][Full Text] [Related]
26. Interaction of anti-iron-sulfur protein and anti-ubiquinone binding protein antibodies with complex III of beef heart mitochondria. Sakurai T; Shimomura Y; Nishikimi M; Ozawa T Biochem Biophys Res Commun; 1986 Apr; 136(1):376-80. PubMed ID: 3010972 [TBL] [Abstract][Full Text] [Related]
27. The pathway of electrons through OH2:cytochrome c oxidoreductase studied by pre-steady -state kinetics. De Vries S; Albracht SP; Berden JA; Slater EC Biochim Biophys Acta; 1982 Jul; 681(1):41-53. PubMed ID: 6288082 [TBL] [Abstract][Full Text] [Related]
28. The iron-sulfur protein of cytochrome bc1 complex. Its occurrence in the mitochondrial inner membrane in excess of the amount constituting the complex. Nishikimi M; Shimomura Y; Ozawa T J Biol Chem; 1985 Sep; 260(19):10398-401. PubMed ID: 2993275 [TBL] [Abstract][Full Text] [Related]
29. Ubiquinol-cytochrome c reductase (EC 1.10.2.2). Isolation in triton X-100 by hydroxyapatite and gel chromatography. Structural and functional properties. Engel WD; Schägger H; von Jagow G Biochim Biophys Acta; 1980 Sep; 592(2):211-22. PubMed ID: 6250588 [TBL] [Abstract][Full Text] [Related]
30. Phospholipid-dependent interaction between dibromothymoquinone and iron-sulfur protein in mitochondrial ubiquinol-cytochrome c reductase. Gwak SH; Yang FD; Yu L; Yu CA Biochim Biophys Acta; 1987 Mar; 890(3):319-25. PubMed ID: 3028477 [TBL] [Abstract][Full Text] [Related]
31. Functional characterization of the mitochondrial cytochrome b-c1 complex: steady-state kinetics of the monomeric and dimeric forms. Nałecz MJ; Azzi A Arch Biochem Biophys; 1985 Aug; 240(2):921-31. PubMed ID: 2992386 [TBL] [Abstract][Full Text] [Related]
32. Purification of cytochrome b from complex III of beef heart mitochondria. Nakahara H; Shimomura Y; Ozawa T Biochem Biophys Res Commun; 1985 Nov; 132(3):1166-73. PubMed ID: 3000365 [TBL] [Abstract][Full Text] [Related]
33. Bypasses of the antimycin a block of mitochondrial electron transport in relation to ubisemiquinone function. Alexandre A; Lehninger AL Biochim Biophys Acta; 1984 Oct; 767(1):120-9. PubMed ID: 6091750 [TBL] [Abstract][Full Text] [Related]
34. Effects of dibromothymoquinone on the structure and function of the mitochondrial bc1 complex. Degli Esposti M; Rotilio G; Lenaz G Biochim Biophys Acta; 1984 Oct; 767(1):10-20. PubMed ID: 6091748 [TBL] [Abstract][Full Text] [Related]
35. Reconstitution of the iron-sulfur protein responsible for the g = 1.90 electron paramagnetic resonance signal and associated cytochrome c reductase activities to depleted succinate-cytochrome c reductase complex. Trumpower BL; Edwards CA; Ohnishi T J Biol Chem; 1980 Aug; 255(15):7487-93. PubMed ID: 6248558 [No Abstract] [Full Text] [Related]
36. Ubiquinol:cytochrome c oxidoreductase (complex III). Effect of inhibitors on cytochrome b reduction in submitochondrial particles and the role of ubiquinone in complex III. Matsuno-Yagi A; Hatefi Y J Biol Chem; 2001 Jun; 276(22):19006-11. PubMed ID: 11262412 [TBL] [Abstract][Full Text] [Related]
37. Mitochondrial superoxide radical formation is controlled by electron bifurcation to the high and low potential pathways. Staniek K; Gille L; Kozlov AV; Nohl H Free Radic Res; 2002 Apr; 36(4):381-7. PubMed ID: 12069101 [TBL] [Abstract][Full Text] [Related]
38. Mitochondrial ubiquinol-cytochrome c reductase complex: crystallization and protein: ubiquinone interaction. Yu CA; Yu L J Bioenerg Biomembr; 1993 Jun; 25(3):259-73. PubMed ID: 8394321 [TBL] [Abstract][Full Text] [Related]
39. Oxidation process of bovine heart ubiquinol-cytochrome c reductase as studied by stopped-flow rapid-scan spectrophotometry and simulations based on the mechanistic Q cycle model. Orii Y; Miki T J Biol Chem; 1997 Jul; 272(28):17594-604. PubMed ID: 9211907 [TBL] [Abstract][Full Text] [Related]
40. Antimycin binds to a small subunit of the ubiquinol: cytochrome c oxidoreductase. van Keulen MA; Berden JA Biochim Biophys Acta; 1985 Jun; 808(1):32-8. PubMed ID: 2988612 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]