These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Identification of critical functional and regulatory domains in gelsolin. Kwiatkowski DJ; Janmey PA; Yin HL J Cell Biol; 1989 May; 108(5):1717-26. PubMed ID: 2541138 [TBL] [Abstract][Full Text] [Related]
5. Chimeric and truncated gCap39 elucidate the requirements for actin filament severing and end capping by the gelsolin family of proteins. Yu FX; Zhou DM; Yin HL J Biol Chem; 1991 Oct; 266(29):19269-75. PubMed ID: 1655780 [TBL] [Abstract][Full Text] [Related]
6. Domain structure in actin-binding proteins: expression and functional characterization of truncated severin. Eichinger L; Noegel AA; Schleicher M J Cell Biol; 1991 Feb; 112(4):665-76. PubMed ID: 1847147 [TBL] [Abstract][Full Text] [Related]
7. Interactions of gelsolin and gelsolin-actin complexes with actin. Effects of calcium on actin nucleation, filament severing, and end blocking. Janmey PA; Chaponnier C; Lind SE; Zaner KS; Stossel TP; Yin HL Biochemistry; 1985 Jul; 24(14):3714-23. PubMed ID: 2994715 [TBL] [Abstract][Full Text] [Related]
9. Identification of a polyphosphoinositide-modulated domain in gelsolin which binds to the sides of actin filaments. Yin HL; Iida K; Janmey PA J Cell Biol; 1988 Mar; 106(3):805-12. PubMed ID: 2831234 [TBL] [Abstract][Full Text] [Related]
11. Expression of human plasma gelsolin in Escherichia coli and dissection of actin binding sites by segmental deletion mutagenesis. Way M; Gooch J; Pope B; Weeds AG J Cell Biol; 1989 Aug; 109(2):593-605. PubMed ID: 2547804 [TBL] [Abstract][Full Text] [Related]
12. Evidence for functional homology in the F-actin binding domains of gelsolin and alpha-actinin: implications for the requirements of severing and capping. Way M; Pope B; Weeds AG J Cell Biol; 1992 Nov; 119(4):835-42. PubMed ID: 1331120 [TBL] [Abstract][Full Text] [Related]
13. Definition of an N-terminal actin-binding domain and a C-terminal Ca2+ regulatory domain in human brevin. Bryan J; Hwo S J Cell Biol; 1986 Apr; 102(4):1439-46. PubMed ID: 3082893 [TBL] [Abstract][Full Text] [Related]
14. Chromaffin cell scinderin, a novel calcium-dependent actin filament-severing protein. Rodriguez Del Castillo A; Lemaire S; Tchakarov L; Jeyapragasan M; Doucet JP; Vitale ML; Trifaró JM EMBO J; 1990 Jan; 9(1):43-52. PubMed ID: 2153078 [TBL] [Abstract][Full Text] [Related]
15. Identification of a polyphosphoinositide-binding sequence in an actin monomer-binding domain of gelsolin. Yu FX; Sun HQ; Janmey PA; Yin HL J Biol Chem; 1992 Jul; 267(21):14616-21. PubMed ID: 1321812 [TBL] [Abstract][Full Text] [Related]
16. The Ca2(+)-dependent actin filament-severing activity of 74-kDa protein (adseverin) resides in its NH2-terminal half. Sakurai T; Kurokawa H; Nonomura Y J Biol Chem; 1991 Mar; 266(7):4581-5. PubMed ID: 1847925 [TBL] [Abstract][Full Text] [Related]
17. Role of the N- and C-terminal actin-binding domains of gelsolin in barbed filament end capping. Weber A; Pring M; Lin SL; Bryan J Biochemistry; 1991 Sep; 30(38):9327-34. PubMed ID: 1654094 [TBL] [Abstract][Full Text] [Related]
18. Calcium regulation of actin filament capping and monomer binding by macrophage capping protein. Young CL; Feierstein A; Southwick FS J Biol Chem; 1994 May; 269(19):13997-4002. PubMed ID: 8188679 [TBL] [Abstract][Full Text] [Related]
19. Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin. Janmey PA; Iida K; Yin HL; Stossel TP J Biol Chem; 1987 Sep; 262(25):12228-36. PubMed ID: 3040735 [TBL] [Abstract][Full Text] [Related]
20. Direct observation of actin filament severing by gelsolin and binding by gCap39 and CapZ. Bearer EL J Cell Biol; 1991 Dec; 115(6):1629-38. PubMed ID: 1661732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]