BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 2999117)

  • 1. Hydroxyl radical attack on dopamine.
    Slivka A; Cohen G
    J Biol Chem; 1985 Dec; 260(29):15466-72. PubMed ID: 2999117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1984 Nov; 235(1):116-26. PubMed ID: 6093705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron-mediated generation of the neurotoxin 6-hydroxydopamine quinone by reaction of fatty acid hydroperoxides with dopamine: a possible contributory mechanism for neuronal degeneration in Parkinson's disease.
    Pezzella A; d'Ischia M; Napolitano A; Misuraca G; Prota G
    J Med Chem; 1997 Jul; 40(14):2211-6. PubMed ID: 9216840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermediates in the aerobic autoxidation of 6-hydroxydopamine: relative importance under different reaction conditions.
    Gee P; Davison AJ
    Free Radic Biol Med; 1989; 6(3):271-84. PubMed ID: 2545550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents.
    Cohen G; Heikkila RE
    J Biol Chem; 1974 Apr; 249(8):2447-52. PubMed ID: 4362682
    [No Abstract]   [Full Text] [Related]  

  • 6. Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method.
    Bektaşoğlu B; Esin Celik S; Ozyürek M; Güçlü K; Apak R
    Biochem Biophys Res Commun; 2006 Jul; 345(3):1194-200. PubMed ID: 16716257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An aromatic hydroxylation assay for hydroxyl radicals utilizing high-performance liquid chromatography (HPLC). Use to investigate the effect of EDTA on the Fenton reaction.
    Grootveld M; Halliwell B
    Free Radic Res Commun; 1986; 1(4):243-50. PubMed ID: 2849582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muconaldehyde formation from 14C-benzene in a hydroxyl radical generating system.
    Latriano L; Zaccaria A; Goldstein BD; Witz G
    J Free Radic Biol Med; 1985; 1(5-6):363-71. PubMed ID: 3018062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of formaldehyde and acetone by hydroxyl-radical generating systems during the metabolism of tertiary butyl alcohol.
    Cederbaum AI; Qureshi A; Cohen G
    Biochem Pharmacol; 1983 Dec; 32(23):3517-24. PubMed ID: 6316986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The involvement of ethanol in the free radical reaction of 6-hydroxydopamine.
    Oldfield FF; Cowan DL; Sun AY
    Neurochem Res; 1991 Jan; 16(1):83-7. PubMed ID: 1646970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide dismutase and Fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II).
    Gutteridge JM; Maidt L; Poyer L
    Biochem J; 1990 Jul; 269(1):169-74. PubMed ID: 2165392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superoxide-dependent formation of hydroxyl radicals from ferric-complexes and hydrogen peroxide: an evaluation of fourteen iron chelators.
    Gutteridge JM
    Free Radic Res Commun; 1990; 9(2):119-25. PubMed ID: 2161386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction.
    Thomas C; Vile GF; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox state of cytochrome c in the presence of the 6-hydroxydopamine/oxygen couple: oscillations dependent on the presence of hydrogen peroxide or superoxide.
    Davison AJ; Gee P
    Arch Biochem Biophys; 1984 Sep; 233(2):761-71. PubMed ID: 6091557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of pH on the conversion of superoxide to hydroxyl free radicals.
    Baker MS; Gebicki JM
    Arch Biochem Biophys; 1984 Oct; 234(1):258-64. PubMed ID: 6091565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation.
    Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R
    Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals.
    Li L; Abe Y; Kanagawa K; Shoji T; Mashino T; Mochizuki M; Tanaka M; Miyata N
    Anal Chim Acta; 2007 Sep; 599(2):315-9. PubMed ID: 17870296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ascorbate-dependent formation of hydroxyl radicals in the presence of iron chelates.
    Prabhu HR; Krishnamurthy S
    Indian J Biochem Biophys; 1993 Oct; 30(5):289-92. PubMed ID: 8144174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cobalt(II) ion as a promoter of hydroxyl radical and possible 'crypto-hydroxyl' radical formation under physiological conditions. Differential effects of hydroxyl radical scavengers.
    Moorhouse CP; Halliwell B; Grootveld M; Gutteridge JM
    Biochim Biophys Acta; 1985 Dec; 843(3):261-8. PubMed ID: 2998477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-stimulated formation of hydrogen peroxide and hydroxyl radical in the presence of uroporphyrin and ascorbate.
    Bachowski GJ; Girotti AW
    Free Radic Biol Med; 1988; 5(1):3-6. PubMed ID: 2855416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.