These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 29991195)

  • 61. Transcriptional regulation of the gene for epidermal growth factor-like peptides in sea urchin embryos.
    Yamasu K; Suzuki G; Horii K; Suyemitsu T
    Int J Dev Biol; 2000 Oct; 44(7):777-84. PubMed ID: 11128571
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Concanavalin A and wheat germ agglutinin binding to sea urchin embryo basal laminae.
    DeSimone DW; Spiegel M
    Rouxs Arch Dev Biol; 1986 Sep; 195(7):433-444. PubMed ID: 28305405
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Isolation and characterization of an endodermally derived, proteoglycan-like extracellular matrix molecule that may be involved in larval starfish digestive tract morphogenesis.
    Reimer CL; Crawford BJ
    Dev Growth Differ; 1997 Jun; 39(3):381-97. PubMed ID: 9227905
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Specification to biomineralization: following a single cell type as it constructs a skeleton.
    Lyons DC; Martik ML; Saunders LR; McClay DR
    Integr Comp Biol; 2014 Oct; 54(4):723-33. PubMed ID: 25009306
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Spatio-temporal expression of pamlin during early embryogenesis in sea urchin and importance of N-linked glycosylation for the glycoprotein function.
    Katow H; Komazaki S
    Rouxs Arch Dev Biol; 1996 May; 205(7-8):371-381. PubMed ID: 28306088
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Extracellular materials and determination of neuroectoblast in amphibian gastrula.
    Sánchez SS; Barbieri FD
    Exp Cell Biol; 1988; 56(1-2):60-6. PubMed ID: 3141226
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The role of the basal lamina in mouth formation in the embryo of the starfish Pisaster ochraceus.
    Crawford B; Abed M
    J Morphol; 1983 May; 176(2):235-246. PubMed ID: 30068064
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos.
    Katow H
    Tissue Barriers; 2015; 3(4):e1059004. PubMed ID: 26716069
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Characterization and Endocytic Internalization of Epith-2 Cell Surface Glycoprotein during the Epithelial-to-Mesenchymal Transition in Sea Urchin Embryos.
    Wakayama N; Katow T; Katow H
    Front Endocrinol (Lausanne); 2013; 4():112. PubMed ID: 24009602
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Extracellular matrix synthesis in blastula and gastrula stages of normal and hybrid frog embryos. I. Toluidine blue and lanthanum staining.
    Johnson KE
    J Cell Sci; 1977 Jun; 25():313-22. PubMed ID: 70430
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In vitro fusion and separation of sea urchin primary mesenchyme cells.
    Karp GC; Solursh M
    Exp Cell Res; 1985 Jun; 158(2):554-7. PubMed ID: 4007067
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Isolation, culture, and differentiation of echinoid primary mesenchyme cells.
    Harkey MA; Whiteley AH
    Wilehm Roux Arch Dev Biol; 1980 Jun; 189(2):111-122. PubMed ID: 28304960
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Structure of first- and second-stage mineralized elements in teeth of the sea urchin Lytechinus variegatus.
    Robach JS; Stock SR; Veis A
    J Struct Biol; 2009 Dec; 168(3):452-66. PubMed ID: 19616101
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Human disease-associated extracellular matrix orthologs ECM3 and QBRICK regulate primary mesenchymal cell migration in sea urchin embryos.
    Kiyozumi D; Yaguchi S; Yaguchi J; Yamazaki A; Sekiguchi K
    Exp Anim; 2021 Aug; 70(3):378-386. PubMed ID: 33828019
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Morphological diversity of blastula formation and gastrulation in temnopleurid sea urchins.
    Kitazawa C; Fujii T; Egusa Y; Komatsu M; Yamanaka A
    Biol Open; 2016 Nov; 5(11):1555-1566. PubMed ID: 27591193
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Patterns of cells and extracellular material of the sea urchin Lytechinus variegatus (Echinodermata; Echinoidea) embryo, from hatched blastula to late gastrula.
    Galileo DS; Morrill JB
    J Morphol; 1985 Sep; 185(3):387-402. PubMed ID: 29991195
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The regulation of primary mesenchyme cell migration in the sea urchin embryo: transplantations of cells and latex beads.
    Ettensohn CA; McClay DR
    Dev Biol; 1986 Oct; 117(2):380-91. PubMed ID: 3758478
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Behavior of Primary Mesenchyme Cells In situ Associated with Ultrastructural Alteration of the Blastocoelic Material in the Sea Urchin, Anthocidaris crassispina: (migration/primary mesenchyme cell/extracellular matrix).
    Katow H; Amemiya S
    Dev Growth Differ; 1986 Feb; 28(1):31-42. PubMed ID: 37281152
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Development of the Basal Lamina and Its Role in Migration and Pattern Formation of Primary Mesenchyme Cells in Sea Urchin Embryos: (sea urchin/primary mesenchyme cell/basal lamina/TEM/SEM).
    Amemiya S
    Dev Growth Differ; 1989 Apr; 31(2):131-145. PubMed ID: 37281876
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ingression of primary mesenchyme cells of the sea urchin embryo: a precisely timed epithelial mesenchymal transition.
    Wu SY; Ferkowicz M; McClay DR
    Birth Defects Res C Embryo Today; 2007 Dec; 81(4):241-52. PubMed ID: 18228256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.