These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29992213)

  • 21. Design of effective zeolite catalysts for the complete hydrogenation of CO2.
    Chan B; Radom L
    J Am Chem Soc; 2006 Apr; 128(16):5322-3. PubMed ID: 16620086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase.
    Chen X; Jing Y; Yang X
    Chemistry; 2016 Jun; 22(26):8897-902. PubMed ID: 27225505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanistic studies on the transformation of ethanol into ethene over Fe-ZSM-5 zeolite.
    Maihom T; Khongpracha P; Sirijaraensre J; Limtrakul J
    Chemphyschem; 2013 Jan; 14(1):101-7. PubMed ID: 23161503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal Effect on Cationic [Cp
    Tang SY
    J Phys Chem A; 2023 Aug; 127(34):7094-7100. PubMed ID: 37595129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and Catalytic Applications of Advanced Sn- and Zr-Zeolites Materials.
    Liu X; Zhu Z
    Adv Sci (Weinh); 2024 Mar; 11(11):e2306533. PubMed ID: 38148424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A DFT Study of CO
    Szyja BM; Smykowski D; Szczygieł J; Hensen EJ; Pidko EA
    ChemCatChem; 2016 Aug; 8(15):2500-2507. PubMed ID: 27840663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reaction-driven selective CO
    Zhang H; Wang X; Liu P
    Phys Chem Chem Phys; 2022 Jul; 24(28):16997-17003. PubMed ID: 35730189
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ruthenium(II)-catalyzed hydrogenation of carbon dioxide to formic acid. Theoretical study of real catalyst, ligand effects, and solvation effects.
    Ohnishi YY; Matsunaga T; Nakao Y; Sato H; Sakaki S
    J Am Chem Soc; 2005 Mar; 127(11):4021-32. PubMed ID: 15771539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1.
    Stare J; Henson NJ; Eckert J
    J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical study of 1,2-hydride shift associated with the isomerization of glyceraldehyde to dihydroxy acetone by Lewis acid active site models.
    Assary RS; Curtiss LA
    J Phys Chem A; 2011 Aug; 115(31):8754-60. PubMed ID: 21707087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lewis Acid Promoted Hydrogenation of CO
    Roy L; Ghosh B; Paul A
    J Phys Chem A; 2017 Jul; 121(27):5204-5216. PubMed ID: 28632392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Density functional theory study of the carbonyl-ene reaction of encapsulated formaldehyde in Cu(I), Ag(I), and Au(I) exchanged FAU zeolites.
    Wannakao S; Khongpracha P; Limtrakul J
    J Phys Chem A; 2011 Nov; 115(45):12486-92. PubMed ID: 21942893
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of Cu-ZSM-5 zeolites and Cu-MOF-505 metal-organic frameworks as heterogeneous catalysts for the Mukaiyama aldol reaction: a DFT mechanistic study.
    Yadnum S; Choomwattana S; Khongpracha P; Sirijaraensre J; Limtrakul J
    Chemphyschem; 2013 Apr; 14(5):923-8. PubMed ID: 23436681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical study of fructose adsorption and conversion to trioses on metal-organic frameworks.
    Sittiwong J; Maihom T; Wansa C; Probst M; Limtrakul J
    Phys Chem Chem Phys; 2024 Apr; 26(14):11105-11112. PubMed ID: 38530640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) redox equilibrium on Sn- and Zr-beta zeolite catalysts.
    Boronat M; Corma A; Renz M
    J Phys Chem B; 2006 Oct; 110(42):21168-74. PubMed ID: 17048941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. gem-Diol-Type Intermediate in the Activation of a Ketone on Sn-β Zeolite as Studied by Solid-State NMR Spectroscopy.
    Qi G; Chu Y; Wang Q; Wang X; Li Y; Trébosc J; Lafon O; Xu J; Deng F
    Angew Chem Int Ed Engl; 2020 Oct; 59(44):19532-19538. PubMed ID: 32449837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Montmorillonite-catalyzed conversions of carbon dioxide to formic acid: Active site, competitive mechanisms, influence factors and origin of high catalytic efficiency.
    Yang G; Zhou L
    J Colloid Interface Sci; 2020 Mar; 563():8-16. PubMed ID: 31865051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of the zeolite framework on the adsorptions and hydrogen-exchange reactions of unsaturated aliphatic, aromatic, and heterocyclic compounds in ZSM-5 zeolite: a combination of perturbation theory (MP2) and a newly developed density functional theory (M06-2X) in ONIOM scheme.
    Boekfa B; Choomwattana S; Khongpracha P; Limtrakul J
    Langmuir; 2009 Nov; 25(22):12990-9. PubMed ID: 19899817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical study of modes of adsorption of water dimer on H-ZSM-5 and H-Faujasite zeolites.
    Jungsuttiwong S; Limtrakul J; Truong TN
    J Phys Chem B; 2005 Jul; 109(27):13342-51. PubMed ID: 16852665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced CO
    Sholeha NA; Mohamad S; Bahruji H; Prasetyoko D; Widiastuti N; Abdul Fatah NA; Jalil AA; Taufiq-Yap YH
    RSC Adv; 2021 Apr; 11(27):16376-16387. PubMed ID: 35479131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.