These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 29992219)

  • 1. The spin-dependent Seebeck effect and the charge and spin figure of merit in a hybrid structure of single-walled carbon nanotubes and zigzag-edge graphene nanoribbons.
    Ye XM; Tang XQ; Tan XY; Ren DH
    Phys Chem Chem Phys; 2018 Jul; 20(29):19424-19429. PubMed ID: 29992219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons.
    Liu QB; Wu DD; Fu HH
    Phys Chem Chem Phys; 2017 Oct; 19(39):27132-27139. PubMed ID: 28967009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pure thermal spin current and perfect spin-filtering with negative differential thermoelectric resistance induced by proximity effect in graphene/silicene junctions.
    Gholami Z; Khoeini F
    Sci Rep; 2021 Jan; 11(1):104. PubMed ID: 33420296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating pure spin current with spin-dependent Seebeck effect in ferromagnetic zigzag graphene nanoribbons.
    Zhou Y; Zheng X
    J Phys Condens Matter; 2019 Aug; 31(31):315301. PubMed ID: 31022711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal transport and spin-dependent Seebeck effect in parallel step-like zigzag graphene nanoribbon junctions.
    Tan X; Liu L; Du GF; Fu HH
    Phys Chem Chem Phys; 2020 Sep; 22(34):19100-19107. PubMed ID: 32808610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin-Seebeck effect and thermoelectric properties of one-dimensional graphene-like nanoribbons periodically embedded with four- and eight-membered rings.
    Xiong L; Gong B; Peng Z; Yu Z
    Phys Chem Chem Phys; 2021 Oct; 23(41):23667-23672. PubMed ID: 34642712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-free magnetism, spin-dependent Seebeck effect, and spin-Seebeck diode effect in armchair graphene nanoribbons.
    Tang XQ; Ye XM; Tan XY; Ren DH
    Sci Rep; 2018 Jan; 8(1):927. PubMed ID: 29343845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin-dependent thermoelectric effects in graphene-based spin valves.
    Zeng M; Huang W; Liang G
    Nanoscale; 2013 Jan; 5(1):200-8. PubMed ID: 23151965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple thermal spin transport performances of graphene nanoribbon heterojuction co-doped with Nitrogen and Boron.
    Huang H; Gao G; Fu H; Zheng A; Zou F; Ding G; Yao K
    Sci Rep; 2017 Jun; 7(1):3955. PubMed ID: 28638083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How to realize a spin-dependent Seebeck diode effect in metallic zigzag γ-graphyne nanoribbons?
    Wu DD; Liu QB; Fu HH; Wu R
    Nanoscale; 2017 Nov; 9(46):18334-18342. PubMed ID: 29143060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strained zigzag graphene nanoribbon devices with vacancies as perfect spin filters.
    Magno M; Hagelberg F
    J Mol Model; 2018 Jan; 24(1):35. PubMed ID: 29313152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-Seebeck effect and thermal colossal magnetoresistance in the narrowest zigzag graphene nanoribbons.
    Wu DD; Fu HH
    Nanotechnology; 2021 Mar; 32(24):245703. PubMed ID: 33755594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Strain-Tuned Spin Seebeck Effect, Spin Polarization, and Giant Magnetoresistance of a Graphene Nanobubble in Zigzag Graphene Nanoribbons.
    Ni Y; Deng G; Li J; Hua H; Liu N
    ACS Omega; 2021 Jun; 6(23):15308-15315. PubMed ID: 34151110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons.
    Zhu L; Li R; Yao K
    Phys Chem Chem Phys; 2017 Feb; 19(5):4085-4092. PubMed ID: 28111668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perfect spin filtering effect and negative differential behavior in phosphorus-doped zigzag graphene nanoribbons.
    Zou F; Zhu L; Yao K
    Sci Rep; 2015 Oct; 5():15966. PubMed ID: 26514646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spin-dependent transport properties of defected zigzag graphene nanoribbons with graphene nanobubbles.
    Ni Y; Li J; Tao W; Ding H; Li RX
    Phys Chem Chem Phys; 2021 Feb; 23(4):2753-2761. PubMed ID: 33471019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perfect Spin Filter in a Tailored Zigzag Graphene Nanoribbon.
    Kang D; Wang B; Xia C; Li H
    Nanoscale Res Lett; 2017 Dec; 12(1):357. PubMed ID: 28525951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Half-metallic properties, single-spin negative differential resistance, and large single-spin Seebeck effects induced by chemical doping in zigzag-edged graphene nanoribbons.
    Yang XF; Zhou WQ; Hong XK; Liu YS; Wang XF; Feng JF
    J Chem Phys; 2015 Jan; 142(2):024706. PubMed ID: 25591376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin caloritronics in armchair silicene nanoribbons with sp
    Tan XY; Wu DD; Liu QB; Fu HH; Wu R
    J Phys Condens Matter; 2018 Sep; 30(35):355303. PubMed ID: 30027896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Armchair graphene nanoribbons with giant spin thermoelectric efficiency.
    Shirdel-Havar M; Farghadan R
    Phys Chem Chem Phys; 2018 Jun; 20(24):16853-16860. PubMed ID: 29892735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.