BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 29992293)

  • 1. SRSF9 selectively represses ADAR2-mediated editing of brain-specific sites in primates.
    Shanmugam R; Zhang F; Srinivasan H; Charles Richard JL; Liu KI; Zhang X; Woo CWA; Chua ZHM; Buschdorf JP; Meaney MJ; Tan MH
    Nucleic Acids Res; 2018 Aug; 46(14):7379-7395. PubMed ID: 29992293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-selective restriction of RNA editing of CaV1.3 by splicing factor SRSF9.
    Huang H; Kapeli K; Jin W; Wong YP; Arumugam TV; Koh JH; Srimasorn S; Mallilankaraman K; Chua JJE; Yeo GW; Soong TW
    Nucleic Acids Res; 2018 Aug; 46(14):7323-7338. PubMed ID: 29733375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aberrant alternative splicing pattern of ADAR2 downregulates adenosine-to-inosine editing in glioma.
    Li Z; Tian Y; Tian N; Zhao X; Du C; Han L; Zhang H
    Oncol Rep; 2015 Jun; 33(6):2845-52. PubMed ID: 25873329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development.
    Behm M; Wahlstedt H; Widmark A; Eriksson M; Öhman M
    J Cell Sci; 2017 Feb; 130(4):745-753. PubMed ID: 28082424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenosine to inosine editing by ADAR2 requires formation of a ternary complex on the GluR-B R/G site.
    Jaikaran DC; Collins CH; MacMillan AM
    J Biol Chem; 2002 Oct; 277(40):37624-9. PubMed ID: 12163487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ADAR2 A-->I editing: site selectivity and editing efficiency are separate events.
    Källman AM; Sahlin M; Ohman M
    Nucleic Acids Res; 2003 Aug; 31(16):4874-81. PubMed ID: 12907730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and sequence determinants required for the RNA editing of ADAR2 substrates.
    Dawson TR; Sansam CL; Emeson RB
    J Biol Chem; 2004 Feb; 279(6):4941-51. PubMed ID: 14660658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative analysis of ADAR mutant mice reveals site-specific regulation of RNA editing.
    Costa Cruz PH; Kato Y; Nakahama T; Shibuya T; Kawahara Y
    RNA; 2020 Apr; 26(4):454-469. PubMed ID: 31941663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate recognition by ADAR1 and ADAR2.
    Wong SK; Sato S; Lazinski DW
    RNA; 2001 Jun; 7(6):846-58. PubMed ID: 11421361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The majority of A-to-I RNA editing is not required for mammalian homeostasis.
    Chalk AM; Taylor S; Heraud-Farlow JE; Walkley CR
    Genome Biol; 2019 Dec; 20(1):268. PubMed ID: 31815657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Base-pairing probability in the microRNA stem region affects the binding and editing specificity of human A-to-I editing enzymes ADAR1-p110 and ADAR2.
    Ishiguro S; Galipon J; Ishii R; Suzuki Y; Kondo S; Okada-Hatakeyama M; Tomita M; Ui-Tei K
    RNA Biol; 2018; 15(7):976-989. PubMed ID: 29950133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-editing enzymes ADAR1 and ADAR2 coordinately regulate the editing and expression of Ctn RNA.
    Anantharaman A; Gholamalamdari O; Khan A; Yoon JH; Jantsch MF; Hartner JC; Gorospe M; Prasanth SG; Prasanth KV
    FEBS Lett; 2017 Sep; 591(18):2890-2904. PubMed ID: 28833069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered editing in RNA editing adenosine deaminase ADAR2 gene transcripts of systemic lupus erythematosus T lymphocytes.
    Laxminarayana D; O'Rourke KS; Maas S; Olorenshaw I
    Immunology; 2007 Jul; 121(3):359-69. PubMed ID: 17376196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic landscape and regulation of RNA editing in mammals.
    Tan MH; Li Q; Shanmugam R; Piskol R; Kohler J; Young AN; Liu KI; Zhang R; Ramaswami G; Ariyoshi K; Gupte A; Keegan LP; George CX; Ramu A; Huang N; Pollina EA; Leeman DS; Rustighi A; Goh YPS; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Chawla A; Del Sal G; Peltz G; Brunet A; Conrad DF; Samuel CE; O'Connell MA; Walkley CR; Nishikura K; Li JB
    Nature; 2017 Oct; 550(7675):249-254. PubMed ID: 29022589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADAR2 Is Involved in Self and Nonself Recognition of Borna Disease Virus Genomic RNA in the Nucleus.
    Yanai M; Kojima S; Sakai M; Komorizono R; Tomonaga K; Makino A
    J Virol; 2020 Feb; 94(6):. PubMed ID: 31852792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel tissue-specific alternatively spliced form of the A-to-I RNA editing enzyme ADAR2.
    Agranat L; Sperling J; Sperling R
    RNA Biol; 2010; 7(2):253-62. PubMed ID: 20215858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA editing by ADAR2 is metabolically regulated in pancreatic islets and beta-cells.
    Gan Z; Zhao L; Yang L; Huang P; Zhao F; Li W; Liu Y
    J Biol Chem; 2006 Nov; 281(44):33386-94. PubMed ID: 16956888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ADAR-related activation of adenosine-to-inosine RNA editing during regeneration.
    Witman NM; Behm M; Ohman M; Morrison JI
    Stem Cells Dev; 2013 Aug; 22(16):2254-67. PubMed ID: 23534823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ADAR-deficiency perturbs the global splicing landscape in mouse tissues.
    Kapoor U; Licht K; Amman F; Jakobi T; Martin D; Dieterich C; Jantsch MF
    Genome Res; 2020 Aug; 30(8):1107-1118. PubMed ID: 32727871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A disrupted RNA editing balance mediated by ADARs (Adenosine DeAminases that act on RNA) in human hepatocellular carcinoma.
    Chan TH; Lin CH; Qi L; Fei J; Li Y; Yong KJ; Liu M; Song Y; Chow RK; Ng VH; Yuan YF; Tenen DG; Guan XY; Chen L
    Gut; 2014 May; 63(5):832-43. PubMed ID: 23766440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.