These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 29992369)

  • 21. Prospects and potentials of underutilized leafy Amaranths as vegetable use for health-promotion.
    Sarker U; Lin YP; Oba S; Yoshioka Y; Hoshikawa K
    Plant Physiol Biochem; 2022 Jul; 182():104-123. PubMed ID: 35487123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Beyond a reference genome: pangenomes and population genomics of underutilized and orphan crops for future food and nutrition security.
    Chapman MA; He Y; Zhou M
    New Phytol; 2022 Jun; 234(5):1583-1597. PubMed ID: 35318683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Beyond landraces: developing improved germplasm resources for underutilized species - a case for Bambara groundnut.
    Aliyu S; Massawe F; Mayes S
    Biotechnol Genet Eng Rev; 2014 Oct; 30(1-2):127-41. PubMed ID: 25603880
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The draft genome and transcriptome of Amaranthus hypochondriacus: a C4 dicot producing high-lysine edible pseudo-cereal.
    Sunil M; Hariharan AK; Nayak S; Gupta S; Nambisan SR; Gupta RP; Panda B; Choudhary B; Srinivasan S
    DNA Res; 2014 Dec; 21(6):585-602. PubMed ID: 25071079
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Orphan Crops and their Wild Relatives in the Genomic Era.
    Ye CY; Fan L
    Mol Plant; 2021 Jan; 14(1):27-39. PubMed ID: 33346062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ancient orphan legume horse gram: a potential food and forage crop of future.
    Aditya JP; Bhartiya A; Chahota RK; Joshi D; Chandra N; Kant L; Pattanayak A
    Planta; 2019 Sep; 250(3):891-909. PubMed ID: 31115659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diversifying crops for food and nutrition security - a case of teff.
    Cheng A; Mayes S; Dalle G; Demissew S; Massawe F
    Biol Rev Camb Philos Soc; 2017 Feb; 92(1):188-198. PubMed ID: 26456883
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [
    Sidorova YS; Petrov NA; Kolobanov AI; Paleeva MA; Zorin SN; Mazo VK
    Vopr Pitan; 2023; 92(4):74-80. PubMed ID: 37801457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic diversity analysis and marker-trait associations in Amaranthus species.
    Jamalluddin N; Massawe FJ; Mayes S; Ho WK; Symonds RC
    PLoS One; 2022; 17(5):e0267752. PubMed ID: 35551526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reverse genetic approaches for breeding nutrient-rich and climate-resilient cereal and food legume crops.
    Kumar J; Kumar A; Sen Gupta D; Kumar S; DePauw RM
    Heredity (Edinb); 2022 Jun; 128(6):473-496. PubMed ID: 35249099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods.
    Martínez-Villaluenga C; Peñas E; Hernández-Ledesma B
    Food Chem Toxicol; 2020 Mar; 137():111178. PubMed ID: 32035214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Breeding and Genomics Interventions for Developing Ascochyta Blight Resistant Grain Legumes.
    Jha UC; Sharma KD; Nayyar H; Parida SK; Siddique KHM
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic Improvement of Cereals and Grain Legumes.
    Nawaz MA; Chung G
    Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33113769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brown-top millet: an overview of breeding, genetic, and genomic resources development for crop improvement.
    Bhavani P; Nandini C; Maharajan T; Ningaraju TM; Nandini B; Parveen SG; Pushpa K; Ravikumar RL; Nagaraja TE; Ceasar SA
    Planta; 2024 May; 260(1):10. PubMed ID: 38796805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Dual Strategy of Breeding for Drought Tolerance and Introducing Drought-Tolerant, Underutilized Crops into Production Systems to Enhance Their Resilience to Water Deficiency.
    Rosero A; Granda L; Berdugo-Cely JA; Šamajová O; Šamaj J; Cerkal R
    Plants (Basel); 2020 Sep; 9(10):. PubMed ID: 32987964
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulating physiological and transcriptional regulatory mechanisms for enhanced climate resilience in cereal crops.
    Choudhary P; Muthamilarasan M
    J Plant Physiol; 2022 Nov; 278():153815. PubMed ID: 36150236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Finger millet: a hero in the making to combat food insecurity.
    Wright H; Devos KM
    Theor Appl Genet; 2024 May; 137(6):139. PubMed ID: 38771345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Next Generation Cereal Crop Yield Enhancement: From Knowledge of Inflorescence Development to Practical Engineering by Genome Editing.
    Liu L; Lindsay PL; Jackson D
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetics- and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook.
    Bohra A; Sahrawat KL; Kumar S; Joshi R; Parihar AK; Singh U; Singh D; Singh NP
    J Appl Genet; 2015 May; 56(2):151-61. PubMed ID: 25592547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic determinants of micronutrient traits in graminaceous crops to combat hidden hunger.
    Sushree Shyamli P; Rana S; Suranjika S; Muthamilarasan M; Parida A; Prasad M
    Theor Appl Genet; 2021 Oct; 134(10):3147-3165. PubMed ID: 34091694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.