These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 29992446)
1. Rhodococcus bacteria as a promising source of oils from olive mill wastes. Herrero OM; Villalba MS; Lanfranconi MP; Alvarez HM World J Microbiol Biotechnol; 2018 Jul; 34(8):114. PubMed ID: 29992446 [TBL] [Abstract][Full Text] [Related]
2. Physiological and genetic differences amongst Rhodococcus species for using glycerol as a source for growth and triacylglycerol production. Herrero OM; Moncalián G; Alvarez HM Microbiology (Reading); 2016 Feb; 162(2):384-397. PubMed ID: 26732874 [TBL] [Abstract][Full Text] [Related]
3. Fruit residues as substrates for single-cell oil production by Rhodococcus species: physiology and genomics of carbohydrate catabolism. Herrero OM; Alvarez HM World J Microbiol Biotechnol; 2024 Jan; 40(2):61. PubMed ID: 38177966 [TBL] [Abstract][Full Text] [Related]
4. Glycogenformation by Rhodococcus species and the effect of inhibition of lipid biosynthesis on glycogen accumulation in Rhodococcus opacus PD630. Hernández MA; Alvarez HM FEMS Microbiol Lett; 2010 Nov; 312(1):93-9. PubMed ID: 21069909 [TBL] [Abstract][Full Text] [Related]
5. Engineering of an L-arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production. Xiong X; Wang X; Chen S J Ind Microbiol Biotechnol; 2016 Jul; 43(7):1017-25. PubMed ID: 27143134 [TBL] [Abstract][Full Text] [Related]
6. Increasing lipid production using an NADP Hernández MA; Alvarez HM Microbiology (Reading); 2019 Jan; 165(1):4-14. PubMed ID: 30372408 [TBL] [Abstract][Full Text] [Related]
7. Identification of a novel ATP-binding cassette transporter involved in long-chain fatty acid import and its role in triacylglycerol accumulation in Rhodococcus jostii RHA1. Villalba MS; Alvarez HM Microbiology (Reading); 2014 Jul; 160(Pt 7):1523-1532. PubMed ID: 24739215 [TBL] [Abstract][Full Text] [Related]
8. Insights into the Metabolism of Oleaginous Alvarez HM; Herrero OM; Silva RA; Hernández MA; Lanfranconi MP; Villalba MS Appl Environ Microbiol; 2019 Sep; 85(18):. PubMed ID: 31324625 [TBL] [Abstract][Full Text] [Related]
9. Engineering levoglucosan metabolic pathway in Rhodococcus jostii RHA1 for lipid production. Xiong X; Lian J; Yu X; Garcia-Perez M; Chen S J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1551-1560. PubMed ID: 27558782 [TBL] [Abstract][Full Text] [Related]
11. Engineering of a xylose metabolic pathway in Rhodococcus strains. Xiong X; Wang X; Chen S Appl Environ Microbiol; 2012 Aug; 78(16):5483-91. PubMed ID: 22636009 [TBL] [Abstract][Full Text] [Related]
12. High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. Kurosawa K; Boccazzi P; de Almeida NM; Sinskey AJ J Biotechnol; 2010 Jun; 147(3-4):212-8. PubMed ID: 20412824 [TBL] [Abstract][Full Text] [Related]
13. Establishment of cellobiose utilization for lipid production in Rhodococcus opacus PD630. Hetzler S; Steinbüchel A Appl Environ Microbiol; 2013 May; 79(9):3122-5. PubMed ID: 23435878 [TBL] [Abstract][Full Text] [Related]
14. Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains. Hernández MA; Comba S; Arabolaza A; Gramajo H; Alvarez HM Appl Microbiol Biotechnol; 2015 Mar; 99(5):2191-207. PubMed ID: 25213912 [TBL] [Abstract][Full Text] [Related]
15. Rewiring neutral lipids production for the de novo synthesis of wax esters in Rhodococcus opacus PD630. Lanfranconi MP; Alvarez HM J Biotechnol; 2017 Oct; 260():67-73. PubMed ID: 28917932 [TBL] [Abstract][Full Text] [Related]
16. Rhodococcus jostii: a home for Rhodococcus strain RHA1. Jones AL; Davies J; Fukuda M; Brown R; Lim J; Goodfellow M Antonie Van Leeuwenhoek; 2013 Sep; 104(3):435-40. PubMed ID: 23851715 [TBL] [Abstract][Full Text] [Related]
17. Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals. Castro AR; Rocha I; Alves MM; Pereira MA AMB Express; 2016 Dec; 6(1):35. PubMed ID: 27179529 [TBL] [Abstract][Full Text] [Related]
18. Production of added value bacterial lipids through valorisation of hydrocarbon-contaminated cork waste. Castro AR; Guimarães M; Oliveira JV; Pereira MA Sci Total Environ; 2017 Dec; 605-606():677-682. PubMed ID: 28675877 [TBL] [Abstract][Full Text] [Related]
19. Production of Added-Value Chemical Compounds through Bioconversions of Olive-Mill Wastewaters Blended with Crude Glycerol by a Sarris D; Rapti A; Papafotis N; Koutinas AA; Papanikolaou S Molecules; 2019 Jan; 24(2):. PubMed ID: 30634450 [TBL] [Abstract][Full Text] [Related]
20. Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source. Moya Ramírez I; Tsaousi K; Rudden M; Marchant R; Jurado Alameda E; García Román M; Banat IM Bioresour Technol; 2015 Dec; 198():231-6. PubMed ID: 26398666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]