These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29992483)

  • 1. Electrophysiological measures reveal the role of anterior cingulate cortex in learning from unreliable feedback.
    Li P; Peng W; Li H; Holroyd CB
    Cogn Affect Behav Neurosci; 2018 Oct; 18(5):949-963. PubMed ID: 29992483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reward positivity affects temporal interval production in a continuous timing task.
    Yan Y; Hunt LT; Hassall CD
    Psychophysiology; 2024 Aug; 61(8):e14589. PubMed ID: 38615339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disentangling effort from probability of success: Temporal dynamics of frontal midline theta in effort-based reward processing.
    Lopez-Gamundi P; Mas-Herrero E; Marco-Pallares J
    Cortex; 2024 Jul; 176():94-112. PubMed ID: 38763111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Willing to wait: Elevated reward-processing EEG activity associated with a greater preference for larger-but-delayed rewards.
    Pornpattananangkul N; Nusslock R
    Neuropsychologia; 2016 Oct; 91():141-162. PubMed ID: 27477630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anterior cingulate activity to monetary loss and basal ganglia activity to monetary gain uniquely contribute to the feedback negativity.
    Foti D; Weinberg A; Bernat EM; Proudfit GH
    Clin Neurophysiol; 2015 Jul; 126(7):1338-47. PubMed ID: 25454338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction-error-dependent processing of immediate and delayed positive feedback.
    Weber C; Bellebaum C
    Sci Rep; 2024 Apr; 14(1):9674. PubMed ID: 38678065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental changes in the reward positivity: an electrophysiological trajectory of reward processing.
    Lukie CN; Montazer-Hojat S; Holroyd CB
    Dev Cogn Neurosci; 2014 Jul; 9():191-9. PubMed ID: 24879113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outcome valence and stimulus frequency affect neural responses to rewards and punishments.
    Glazer J; Nusslock R
    Psychophysiology; 2022 Mar; 59(3):e13981. PubMed ID: 34847254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforcement learning and the reward positivity with aversive outcomes.
    Bauer EA; Watanabe BK; MacNamara A
    Psychophysiology; 2024 Apr; 61(4):e14460. PubMed ID: 37994210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revenge is sweet: Investigation of the effects of Approach-Motivated anger on the RewP in the motivated anger delay (MAD) paradigm.
    Threadgill AH; Gable PA
    Hum Brain Mapp; 2020 Dec; 41(17):5032-5056. PubMed ID: 32856760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theta and high-beta networks for feedback processing: a simultaneous EEG-fMRI study in healthy male subjects.
    Andreou C; Frielinghaus H; Rauh J; Mußmann M; Vauth S; Braun P; Leicht G; Mulert C
    Transl Psychiatry; 2017 Jan; 7(1):e1016. PubMed ID: 28140398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effort expenditure modulates feedback evaluations involving self-other agreement: evidence from brain potentials and neural oscillations.
    Li J; Zhong B; Li M; Sun Y; Fan W; Liu S
    Cereb Cortex; 2024 Mar; 34(3):. PubMed ID: 38517174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Affective imagery boosts the reward related delta power in hazardous drinkers.
    Singh G; Campbell EM; Hogeveen J; Witkiewitz K; Claus ED; Cavanagh JF
    Psychiatry Res Neuroimaging; 2023 Sep; 334():111685. PubMed ID: 37506424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dysfunctional feedback processing in male methamphetamine abusers: Evidence from neurophysiological and computational approaches.
    Ghaderi S; Amani Rad J; Hemami M; Khosrowabadi R
    Neuropsychologia; 2024 May; 197():108847. PubMed ID: 38460774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feedback-Related Negativity and Frontal Midline Theta Reflect Dissociable Processing of Reinforcement.
    Rawls E; Miskovic V; Moody SN; Lee Y; Shirtcliff EA; Lamm C
    Front Hum Neurosci; 2019; 13():452. PubMed ID: 31998100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recording neural reward signals in a naturalistic operant task using mobile-EEG and augmented reality.
    Stringfellow JS; Liran O; Lin MH; Baker TE
    eNeuro; 2024 Jul; ():. PubMed ID: 39013585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depth recordings of the mouse homologue of the Reward Positivity.
    Kehrer P; Brigman JL; Cavanagh JF
    Cogn Affect Behav Neurosci; 2024 Apr; 24(2):292-301. PubMed ID: 37853299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recording neural reward signals in the real-world using mobile-EEG and augmented reality.
    Stringfellow J; Liran O; Lin MH; Baker TE
    bioRxiv; 2023 Sep; ():. PubMed ID: 37693413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical context dictates the relationship between feedback-related EEG signals and learning.
    Nassar MR; Bruckner R; Frank MJ
    Elife; 2019 Aug; 8():. PubMed ID: 31433294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioral and brain pattern differences between acting and observing in an auditory task.
    Karanasiou IS; Papageorgiou C; Tsianaka EI; Matsopoulos GK; Ventouras EM; Uzunoglu NK
    Behav Brain Funct; 2009 Jan; 5():5. PubMed ID: 19154586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.