These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 29992484)

  • 1. Ocular signatures of proactive versus reactive cognitive control in young adults.
    Mäki-Marttunen V; Hagen T; Aminihajibashi S; Foldal M; Stavrinou M; Halvorsen JH; Laeng B; Espeseth T
    Cogn Affect Behav Neurosci; 2018 Oct; 18(5):1049-1063. PubMed ID: 29992484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proactive and reactive cognitive control rely on flexible use of the ventrolateral prefrontal cortex.
    Ryman SG; El Shaikh AA; Shaff NA; Hanlon FM; Dodd AB; Wertz CJ; Ling JM; Barch DM; Stromberg SF; Lin DS; Abrams S; Mayer AR
    Hum Brain Mapp; 2019 Feb; 40(3):955-966. PubMed ID: 30407681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immediate versus delayed control demands elicit distinct mechanisms for instantiating proactive control.
    Janowich JR; Cavanagh JF
    Cogn Affect Behav Neurosci; 2019 Aug; 19(4):910-926. PubMed ID: 30607833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delay knowledge and trial set count modulate use of proactive versus reactive control: A meta-analytic review.
    Janowich JR; Cavanagh JF
    Psychon Bull Rev; 2018 Aug; 25(4):1249-1268. PubMed ID: 29980996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cognition, blinks, eye-movements, and pupillary movements during performance of a running memory task.
    Fukuda K; Stern JA; Brown TB; Russo MB
    Aviat Space Environ Med; 2005 Jul; 76(7 Suppl):C75-85. PubMed ID: 16018333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does verbal labeling influence age differences in proactive and reactive cognitive control?
    Kray J; Schmitt H; Heintz S; Blaye A
    Dev Psychol; 2015 Mar; 51(3):378-91. PubMed ID: 25706593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptiveness in proactive control engagement in children and adults.
    Chevalier N; Meaney JA; Traut HJ; Munakata Y
    Dev Cogn Neurosci; 2020 Dec; 46():100870. PubMed ID: 33120165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced pupil dilation during action preparation in schizophrenia.
    Thakkar KN; Brascamp JW; Ghermezi L; Fifer K; Schall JD; Park S
    Int J Psychophysiol; 2018 Jun; 128():111-118. PubMed ID: 29574231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal dynamics of motivation-cognitive control interactions revealed by high-resolution pupillometry.
    Chiew KS; Braver TS
    Front Psychol; 2013; 4():15. PubMed ID: 23372557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proactive and Reactive Inhibitory Control Strategies: Exploring the Impact of Interindividual Variables on an ERP Continuous Performance Task (AX-CPT).
    Schröder E; Ingels A; Dumitrescu A; Kornreich C; Campanella S
    Clin EEG Neurosci; 2024 May; 55(3):317-328. PubMed ID: 36562088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pupillary responses and reaction times index different cognitive processes in a combined Go/Switch incidental learning task.
    Isabella SL; Urbain C; Cheyne JA; Cheyne D
    Neuropsychologia; 2019 Apr; 127():48-56. PubMed ID: 30771402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blink before and after you think: blinks occur prior to and following cognitive load indexed by pupillary responses.
    Siegle GJ; Ichikawa N; Steinhauer S
    Psychophysiology; 2008 Sep; 45(5):679-87. PubMed ID: 18665867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proactive and reactive modes of cognitive control can operate independently and simultaneously.
    Mäki-Marttunen V; Hagen T; Espeseth T
    Acta Psychol (Amst); 2019 Aug; 199():102891. PubMed ID: 31400651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metacognitive processes in executive control development: the case of reactive and proactive control.
    Chevalier N; Martis SB; Curran T; Munakata Y
    J Cogn Neurosci; 2015 Jun; 27(6):1125-36. PubMed ID: 25603026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How sequential changes in reward expectation modulate cognitive control: Pupillometry as a tool to monitor dynamic changes in reward expectation.
    Fröber K; Pittino F; Dreisbach G
    Int J Psychophysiol; 2020 Feb; 148():35-49. PubMed ID: 31863851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related changes in neural recruitment for cognitive control.
    Kopp B; Lange F; Howe J; Wessel K
    Brain Cogn; 2014 Mar; 85():209-19. PubMed ID: 24434022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cue validity effects in response preparation: a pupillometric study.
    Moresi S; Adam JJ; Rijcken J; Van Gerven PW
    Brain Res; 2008 Feb; 1196():94-102. PubMed ID: 18222417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of resource allocation by intelligent individuals in linguistic, mathematical and visuo-spatial tasks.
    Lee G; Ojha A; Kang JS; Lee M
    Int J Psychophysiol; 2015 Jul; 97(1):14-22. PubMed ID: 25931113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foggy windows: Pupillary responses during task preparation.
    Trani A; Verhaeghen P
    Q J Exp Psychol (Hove); 2018 Oct; 71(10):2235-2248. PubMed ID: 30226439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bilingualism modulates dual mechanisms of cognitive control: Evidence from ERPs.
    Morales J; Yudes C; Gómez-Ariza CJ; Bajo MT
    Neuropsychologia; 2015 Jan; 66():157-69. PubMed ID: 25448864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.