These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29992547)

  • 21. Correcting for Measurement Error in Time-Varying Covariates in Marginal Structural Models.
    Kyle RP; Moodie EE; Klein MB; Abrahamowicz M
    Am J Epidemiol; 2016 Aug; 184(3):249-58. PubMed ID: 27416840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifiability and estimation of causal mediation effects with missing data.
    Li W; Zhou XH
    Stat Med; 2017 Nov; 36(25):3948-3965. PubMed ID: 28783880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Risk factors, confounding, and the illusion of statistical control.
    Christenfeld NJ; Sloan RP; Carroll D; Greenland S
    Psychosom Med; 2004; 66(6):868-75. PubMed ID: 15564351
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Limitations and Misinterpretations of E-Values for Sensitivity Analyses of Observational Studies.
    Ioannidis JPA; Tan YJ; Blum MR
    Ann Intern Med; 2019 Jan; 170(2):108-111. PubMed ID: 30597486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Sensitivity analysis method for unmeasured confounding interference in observational study].
    Wang DH; You DF; Huang LL; Zhao Y
    Zhonghua Liu Xing Bing Xue Za Zhi; 2019 Nov; 40(11):1470-1475. PubMed ID: 31838823
    [No Abstract]   [Full Text] [Related]  

  • 26. Causal inference accounting for unobserved confounding after outcome regression and doubly robust estimation.
    Genbäck M; de Luna X
    Biometrics; 2019 Jun; 75(2):506-515. PubMed ID: 30430543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexible template matching for observational study design.
    Zhao R; Lu B
    Stat Med; 2023 May; 42(11):1760-1778. PubMed ID: 36863006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identifiability of causal effects for binary variables with baseline data missing due to death.
    Yan W; Hu Y; Geng Z
    Biometrics; 2012 Mar; 68(1):121-8. PubMed ID: 21838813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches.
    Little RJ; Rubin DB
    Annu Rev Public Health; 2000; 21():121-45. PubMed ID: 10884949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The sign of the bias of unmeasured confounding.
    VanderWeele TJ
    Biometrics; 2008 Sep; 64(3):702-706. PubMed ID: 18177462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bias Formulas for Estimating Direct and Indirect Effects When Unmeasured Confounding Is Present.
    le Cessie S
    Epidemiology; 2016 Jan; 27(1):125-32. PubMed ID: 26426943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A sensitivity analysis using information about measured confounders yielded improved uncertainty assessments for unmeasured confounding.
    McCandless LC; Gustafson P; Levy AR
    J Clin Epidemiol; 2008 Mar; 61(3):247-55. PubMed ID: 18226747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing the impact of unmeasured confounders for credible and reliable real-world evidence.
    Zhang X; Stamey JD; Mathur MB
    Pharmacoepidemiol Drug Saf; 2020 Oct; 29(10):1219-1227. PubMed ID: 32929830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On estimation of the survivor average causal effect in observational studies when important confounders are missing due to death.
    Egleston BL; Scharfstein DO; MacKenzie E
    Biometrics; 2009 Jun; 65(2):497-504. PubMed ID: 18759833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies.
    Schuler MS; Rose S
    Am J Epidemiol; 2017 Jan; 185(1):65-73. PubMed ID: 27941068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensitivity analysis for causal inference under unmeasured confounding and measurement error problems.
    Díaz I; van der Laan MJ
    Int J Biostat; 2013 Nov; 9(2):149-60. PubMed ID: 24246288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sensitivity analysis of unmeasured confounding in causal inference based on exponential tilting and super learner.
    Zhou M; Yao W
    J Appl Stat; 2023; 50(3):744-760. PubMed ID: 36819084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Can statistical adjustment guided by causal inference improve the accuracy of effect estimation? A simulation and empirical research based on meta-analyses of case-control studies.
    Yan R; Liu T; Peng Y; Peng X
    BMC Med Inform Decis Mak; 2020 Dec; 20(1):333. PubMed ID: 33308213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. "A Bayesian sensitivity analysis to evaluate the impact of unmeasured confounding with external data: a real world comparative effectiveness study in osteoporosis".
    Zhang X; Faries DE; Boytsov N; Stamey JD; Seaman JW
    Pharmacoepidemiol Drug Saf; 2016 Sep; 25(9):982-92. PubMed ID: 27396534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.