These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 29992979)
1. Inhibition of the precursor and mature forms of HIV-1 protease as a tool for drug evaluation. Humpolíčková J; Weber J; Starková J; Mašínová E; Günterová J; Flaisigová I; Konvalinka J; Majerová T Sci Rep; 2018 Jul; 8(1):10438. PubMed ID: 29992979 [TBL] [Abstract][Full Text] [Related]
2. Binding of Clinical Inhibitors to a Model Precursor of a Rationally Selected Multidrug Resistant HIV-1 Protease Is Significantly Weaker Than That to the Released Mature Enzyme. Park JH; Sayer JM; Aniana A; Yu X; Weber IT; Harrison RW; Louis JM Biochemistry; 2016 Apr; 55(16):2390-400. PubMed ID: 27039930 [TBL] [Abstract][Full Text] [Related]
3. A Functional Interplay between Human Immunodeficiency Virus Type 1 Protease Residues 77 and 93 Involved in Differential Regulation of Precursor Autoprocessing and Mature Protease Activity. Counts CJ; Ho PS; Donlin MJ; Tavis JE; Chen C PLoS One; 2015; 10(4):e0123561. PubMed ID: 25893662 [TBL] [Abstract][Full Text] [Related]
4. In vivo processing of Pr160gag-pol from human immunodeficiency virus type 1 (HIV) in acutely infected, cultured human T-lymphocytes. Lindhofer H; von der Helm K; Nitschko H Virology; 1995 Dec; 214(2):624-7. PubMed ID: 8553565 [TBL] [Abstract][Full Text] [Related]
5. HIV-1 protease with leucine zipper fused at N-terminus exhibits enhanced linker amino acid-dependent activity. Yu FH; Wang CT Retrovirology; 2018 Apr; 15(1):32. PubMed ID: 29655366 [TBL] [Abstract][Full Text] [Related]
6. Terminal interface conformations modulate dimer stability prior to amino terminal autoprocessing of HIV-1 protease. Agniswamy J; Sayer JM; Weber IT; Louis JM Biochemistry; 2012 Feb; 51(5):1041-50. PubMed ID: 22242794 [TBL] [Abstract][Full Text] [Related]
7. Context-dependent autoprocessing of human immunodeficiency virus type 1 protease precursors. Tien C; Huang L; Watanabe SM; Speidel JT; Carter CA; Chen C PLoS One; 2018; 13(1):e0191372. PubMed ID: 29338056 [TBL] [Abstract][Full Text] [Related]
8. Proteolytic activity of human immunodeficiency virus Vpr- and Vpx-protease fusion proteins. Wu X; Liu H; Xiao H; Kappes JC Virology; 1996 May; 219(1):307-13. PubMed ID: 8623547 [TBL] [Abstract][Full Text] [Related]
9. Human immunodeficiency virus type 1 Vif-derived peptides inhibit the viral protease and arrest virus production. Baraz L; Friedler A; Blumenzweig I; Nussinuv O; Chen N; Steinitz M; Gilon C; Kotler M FEBS Lett; 1998 Dec; 441(3):419-26. PubMed ID: 9891983 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of autoprocessing of natural variants and multidrug resistant mutant precursors of HIV-1 protease by clinical inhibitors. Louis JM; Aniana A; Weber IT; Sayer JM Proc Natl Acad Sci U S A; 2011 May; 108(22):9072-7. PubMed ID: 21576495 [TBL] [Abstract][Full Text] [Related]
11. Nelfinavir-resistant, amprenavir-hypersusceptible strains of human immunodeficiency virus type 1 carrying an N88S mutation in protease have reduced infectivity, reduced replication capacity, and reduced fitness and process the Gag polyprotein precursor aberrantly. Resch W; Ziermann R; Parkin N; Gamarnik A; Swanstrom R J Virol; 2002 Sep; 76(17):8659-66. PubMed ID: 12163585 [TBL] [Abstract][Full Text] [Related]
12. Hydrophilic peptides derived from the transframe region of Gag-Pol inhibit the HIV-1 protease. Louis JM; Dyda F; Nashed NT; Kimmel AR; Davies DR Biochemistry; 1998 Feb; 37(8):2105-10. PubMed ID: 9485357 [TBL] [Abstract][Full Text] [Related]
13. Structural studies on molecular mechanisms of Nelfinavir resistance caused by non-active site mutation V77I in HIV-1 protease. Gupta A; Jamal S; Goyal S; Jain R; Wahi D; Grover A BMC Bioinformatics; 2015; 16 Suppl 19(Suppl 19):S10. PubMed ID: 26695135 [TBL] [Abstract][Full Text] [Related]
14. Peptides derived from HIV-1 Vif: a non-substrate based novel type of HIV-1 protease inhibitors. Friedler A; Blumenzweig I; Baraz L; Steinitz M; Kotler M; Gilon C J Mol Biol; 1999 Mar; 287(1):93-101. PubMed ID: 10074409 [TBL] [Abstract][Full Text] [Related]
15. The role of polymorphisms at position 89 in the HIV-1 protease gene in the development of drug resistance to HIV-1 protease inhibitors. Martinez-Cajas JL; Wainberg MA; Oliveira M; Asahchop EL; Doualla-Bell F; Lisovsky I; Moisi D; Mendelson E; Grossman Z; Brenner BG J Antimicrob Chemother; 2012 Apr; 67(4):988-94. PubMed ID: 22315096 [TBL] [Abstract][Full Text] [Related]
16. Human immunodeficiency virus (HIV) type 1 transframe protein can restore activity to a dimerization-deficient HIV protease variant. Dautin N; Karimova G; Ladant D J Virol; 2003 Aug; 77(15):8216-26. PubMed ID: 12857890 [TBL] [Abstract][Full Text] [Related]
17. Nelfinavir inhibits regulated intramembrane proteolysis of sterol regulatory element binding protein-1 and activating transcription factor 6 in castration-resistant prostate cancer. Guan M; Fousek K; Chow WA FEBS J; 2012 Jul; 279(13):2399-411. PubMed ID: 22540830 [TBL] [Abstract][Full Text] [Related]
18. Systematic profiling of substrate binding response to multidrug-resistant mutations in HIV-1 protease: Implication for combating drug resistance. Lv Y; Li J; Fang J; Jiao X; Yan L; Shan B J Mol Graph Model; 2017 Jun; 74():83-88. PubMed ID: 28371730 [TBL] [Abstract][Full Text] [Related]
19. Establishment of a new cell line inducibly expressing HIV-1 protease for performing safe and highly sensitive screening of HIV protease inhibitors. Fuse T; Watanabe K; Kitazato K; Kobayashi N Microbes Infect; 2006 Jun; 8(7):1783-9. PubMed ID: 16815068 [TBL] [Abstract][Full Text] [Related]