BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 29992980)

  • 21. Thermal Conductivity of Molten Carbonates with Dispersed Solid Oxide from Differential Scanning Calorimetry.
    Kandhasamy S; Støre A; Haarberg GM; Kjelstrup S; Solheim A
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31071911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploration of Basalt Glasses as High-Temperature Sensible Heat Storage Materials.
    Liu J; Chang Z; Wang L; Xu J; Kuang R; Wu Z
    ACS Omega; 2020 Aug; 5(30):19236-19246. PubMed ID: 32775927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specific Heat Capacity of Solar Salt-Based Nanofluids: Molecular Dynamics Simulation and Experiment.
    Abir FM; Shin D
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38276444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A review of parabolic solar cookers with thermal energy storage.
    Lentswe K; Mawire A; Owusu P; Shobo A
    Heliyon; 2021 Oct; 7(10):e08226. PubMed ID: 34746474
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Red mud-molten salt composites for medium-high temperature thermal energy storage and waste heat recovery applications.
    Anagnostopoulos A; Navarro ME; Stefanidou M; Ding Y; Gaidajis G
    J Hazard Mater; 2021 Jul; 413():125407. PubMed ID: 33930958
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stabilization of molten salt materials using metal chlorides for solar thermal storage.
    Dunlop TO; Jarvis DJ; Voice WE; Sullivan JH
    Sci Rep; 2018 May; 8(1):8190. PubMed ID: 29844342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of Fatty Acids as Biobased Organic Materials for Latent Heat Storage.
    Duquesne M; Mailhé C; Doppiu S; Dauvergne JL; Santos-Moreno S; Godin A; Fleury G; Rouault F; Palomo Del Barrio E
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molten salt eutectics from atomistic simulations.
    Jayaraman S; Thompson AP; von Lilienfeld OA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):030201. PubMed ID: 22060319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solar salt doped by MWCNTs as a promising high thermal conductivity material for CSP.
    Wu Y; Li J; Wang M; Wang H; Zhong Y; Zhao Y; Wei M; Li Y
    RSC Adv; 2018 May; 8(34):19251-19260. PubMed ID: 35539666
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specific heat capacity enhancement studied in silica doped potassium nitrate via molecular dynamics simulation.
    Engelmann S; Hentschke R
    Sci Rep; 2019 May; 9(1):7606. PubMed ID: 31110229
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of NaCl-MgCl
    Dong W; Tian H; Zhang W; Zhou JJ; Pang X
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):530-539. PubMed ID: 38126774
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A New Phase Change Material Based on Potassium Nitrate with Silica and Alumina Nanoparticles for Thermal Energy Storage.
    Chieruzzi M; Miliozzi A; Crescenzi T; Torre L; Kenny JM
    Nanoscale Res Lett; 2015 Dec; 10(1):984. PubMed ID: 26123273
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-efficiency solar thermoelectric conversion enabled by movable charging of molten salts.
    Chang C; Wang Z; Fu B; Ji Y
    Sci Rep; 2020 Nov; 10(1):20500. PubMed ID: 33235267
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Materials for High Temperature Liquid Lead Storage for Concentrated Solar Power (CSP) Air Tower Systems.
    Rinaldi A; Barbieri G; Kosykh E; Szakalos P; Testani C
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications.
    Lasfargues M; Bell A; Ding Y
    J Nanopart Res; 2016; 18():150. PubMed ID: 27358585
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal conductivity of molten salt mixtures: Theoretical model supported by equilibrium molecular dynamics simulations.
    Gheribi AE; Chartrand P
    J Chem Phys; 2016 Feb; 144(8):084506. PubMed ID: 26931711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of Low-Cost Particulates Used as Energy Storage and Heat-Transfer Medium in Concentrated Solar Power Systems.
    Saeed RS; Alswaiyd A; Saleh NS; Alaqel S; Djajadiwinata E; El-Leathy A; Danish SN; Al-Ansary H; Jeter S; Al-Suhaibani Z; Almutairi Z
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454646
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance Investigation of High Temperature Application of Molten Solar Salt Nanofluid in a Direct Absorption Solar Collector.
    Karim MA; Arthur O; Yarlagadda PK; Islam M; Mahiuddin M
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30646577
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new thermal conductivity probe for high temperature tests for the characterization of molten salts.
    Bovesecchi G; Coppa P; Pistacchio S
    Rev Sci Instrum; 2018 May; 89(5):055107. PubMed ID: 29864801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal Conductivity of Eutectic Nitrates and Nitrates/Expanded Graphite Composite as Phase Change Materials.
    Xiao X; Zhang P; Meng ZN; Li M
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3135-42. PubMed ID: 26353550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.