BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 29993399)

  • 21. Electrical stimulation-induced cell clustering in cultured neural networks.
    Jun SB; Hynd MR; Smith KL; Song JK; Turner JN; Shain W; Kim SJ
    Med Biol Eng Comput; 2007 Nov; 45(11):1015-21. PubMed ID: 17684784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Foetal neural progenitors contribute to postnatal circuits formation ex vivo: an electrophysiological investigation.
    Manzati M; Sorbo T; Giugliano M; Ballerini L
    Mol Brain; 2020 May; 13(1):78. PubMed ID: 32430072
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multisite Intracellular Recordings by MEA.
    Spira ME; Huang SH; Shmoel N; Erez H
    Adv Neurobiol; 2019; 22():125-153. PubMed ID: 31073934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A 3D neuronal network read-out interface with high recording performance using a neuronal cluster patterning on a microelectrode array.
    Yoon D; Nam Y
    Biosens Bioelectron; 2024 Oct; 261():116507. PubMed ID: 38905857
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of Axonal Spikes in Cultured Neuronal Networks Using Microelectrode Arrays and Microchannel Devices.
    Hong N; Joo S; Nam Y
    IEEE Trans Biomed Eng; 2017 Feb; 64(2):492-498. PubMed ID: 27187941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation.
    Kim JH; Kang G; Nam Y; Choi YK
    Nanotechnology; 2010 Feb; 21(8):85303. PubMed ID: 20101076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A system for MEA-based multisite stimulation.
    Jimbo Y; Kasai N; Torimitsu K; Tateno T; Robinson HP
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):241-8. PubMed ID: 12665038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and validation of a spike detection and classification algorithm aimed at implementation on hardware devices.
    Biffi E; Ghezzi D; Pedrocchi A; Ferrigno G
    Comput Intell Neurosci; 2010; 2010():659050. PubMed ID: 20300592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in vitro.
    Xiang G; Pan L; Huang L; Yu Z; Song X; Cheng J; Xing W; Zhou Y
    Biosens Bioelectron; 2007 May; 22(11):2478-84. PubMed ID: 17071071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Agarose microwell based neuronal micro-circuit arrays on microelectrode arrays for high throughput drug testing.
    Kang G; Lee JH; Lee CS; Nam Y
    Lab Chip; 2009 Nov; 9(22):3236-42. PubMed ID: 19865730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings.
    Johnson MD; Franklin RK; Gibson MD; Brown RB; Kipke DR
    J Neurosci Methods; 2008 Sep; 174(1):62-70. PubMed ID: 18692090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Active High-Density Electrode Arrays: Technology and Applications in Neuronal Cell Cultures.
    Lonardoni D; Amin H; Zordan S; Boi F; Lecomte A; Angotzi GN; Berdondini L
    Adv Neurobiol; 2019; 22():253-273. PubMed ID: 31073940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The emergence and properties of mutual synchronization in in vitro coupled cortical networks.
    Baruchi I; Volman V; Raichman N; Shein M; Ben-Jacob E
    Eur J Neurosci; 2008 Nov; 28(9):1825-35. PubMed ID: 18973597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks.
    Berdondini L; Imfeld K; Maccione A; Tedesco M; Neukom S; Koudelka-Hep M; Martinoia S
    Lab Chip; 2009 Sep; 9(18):2644-51. PubMed ID: 19704979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Early onset of electrical activity in developing neurons cultured on carbon nanotube immobilized microelectrodes.
    Khraiche ML; Jackson N; Muthuswamy J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():777-80. PubMed ID: 19964241
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays.
    Jun SB; Hynd MR; Dowell-Mesfin N; Smith KL; Turner JN; Shain W; Kim SJ
    J Neurosci Methods; 2007 Mar; 160(2):317-26. PubMed ID: 17049614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurement of electrical activity of long-term mammalian neuronal networks on semiconductor neurosensor chips and comparison with conventional microelectrode arrays.
    Krause G; Lehmann S; Lehmann M; Freund I; Schreiber E; Baumann W
    Biosens Bioelectron; 2006 Jan; 21(7):1272-82. PubMed ID: 16006112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics.
    Shin H; Jeong S; Lee JH; Sun W; Choi N; Cho IJ
    Nat Commun; 2021 Jan; 12(1):492. PubMed ID: 33479237
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro microelectrode array technology and neural recordings.
    Nam Y; Wheeler BC
    Crit Rev Biomed Eng; 2011; 39(1):45-61. PubMed ID: 21488814
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.