These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 29993399)

  • 41. Automatic positioning and sensing microelectrode array (APSMEA) for multi-site electrophysiological recordings.
    Pan L; Xiang G; Huang L; Yu Z; Cheng J; Xing W; Zhou Y
    J Neurosci Methods; 2008 May; 170(1):123-9. PubMed ID: 18295341
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adult neural progenitor cells reactivate superbursting in mature neural networks.
    Stephens CL; Toda H; Palmer TD; DeMarse TB; Ormerod BK
    Exp Neurol; 2012 Mar; 234(1):20-30. PubMed ID: 22198136
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A high aspect ratio microelectrode array for mapping neural activity in vitro.
    Kibler AB; Jamieson BG; Durand DM
    J Neurosci Methods; 2012 Mar; 204(2):296-305. PubMed ID: 22179041
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SIMONE: a realistic neural network simulator to reproduce MEA-based recordings.
    Escolá R; Pouzat C; Chaffiol A; Yvert B; Magnin IE; Guillemaud R
    IEEE Trans Neural Syst Rehabil Eng; 2008 Apr; 16(2):149-60. PubMed ID: 18403283
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unit activity, evoked potentials and slow waves in the rat hippocampus and olfactory bulb recorded with a 24-channel microelectrode.
    Kuperstein M; Eichenbaum H
    Neuroscience; 1985 Jul; 15(3):703-12. PubMed ID: 4069353
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spatiotemporal characterization of rhythmic activity in rat spinal cord slice cultures.
    Tscherter A; Heuschkel MO; Renaud P; Streit J
    Eur J Neurosci; 2001 Jul; 14(2):179-90. PubMed ID: 11553271
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A patterned polystyrene-based microelectrode array for in vitro neuronal recordings.
    Hammack A; Rihani RT; Black BJ; Pancrazio JJ; Gnade BE
    Biomed Microdevices; 2018 Jun; 20(2):48. PubMed ID: 29909439
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development and pharmacological modulation of embryonic stem cell-derived neuronal network activity.
    Illes S; Fleischer W; Siebler M; Hartung HP; Dihné M
    Exp Neurol; 2007 Sep; 207(1):171-6. PubMed ID: 17644089
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A 512-Ch Dual-Mode Microchip for Simultaneous Measurements of Electrophysiological and Neurochemical Activities.
    Mulberry G; White KA; Crocker MA; Kim BN
    Biosensors (Basel); 2023 Apr; 13(5):. PubMed ID: 37232863
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Helix neuronal ensembles with controlled cell type composition and placement develop functional polysynaptic circuits on Micro-Electrode Arrays.
    Massobrio P; Tedesco M; Giachello C; Ghirardi M; Fiumara F; Martinoia S
    Neurosci Lett; 2009 Dec; 467(2):121-6. PubMed ID: 19822187
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MEA-based recording of neuronal activity in vitro.
    Jimbo Y
    Arch Ital Biol; 2007 Nov; 145(3-4):289-97. PubMed ID: 18075122
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Long-Term Developmental Process of the Human Cortex Revealed In Vitro by Axon-Targeted Recording Using a Microtunnel-Augmented Microelectrode Array.
    Shimba K; Sakai K; Iida S; Kotani K; Jimbo Y
    IEEE Trans Biomed Eng; 2019 Sep; 66(9):2538-2545. PubMed ID: 30624211
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neural recording and stimulation of dissociated hippocampal cultures using microfabricated three-dimensional tip electrode array.
    Nam Y; Wheeler BC; Heuschkel MO
    J Neurosci Methods; 2006 Sep; 155(2):296-9. PubMed ID: 16494949
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel dual mode microelectrode array for neuroelectrical and neurochemical recording in vitro.
    Song Y; Lin N; Liu C; Jiang H; Xing G; Cai X
    Biosens Bioelectron; 2012; 38(1):416-20. PubMed ID: 22672764
    [TBL] [Abstract][Full Text] [Related]  

  • 56. BioMEA: a 256-channel MEA system with integrated electronics.
    Charvet G; Billoint O; Rousseau L; Yvert B
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():171-4. PubMed ID: 18001916
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology.
    Frega M; Tedesco M; Massobrio P; Pesce M; Martinoia S
    Sci Rep; 2014 Jun; 4():5489. PubMed ID: 24976386
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A CMOS neuroelectronic interface based on two-dimensional transistor arrays with monolithically-integrated circuitry.
    Chang CH; Chang SR; Lin JS; Lee YT; Yeh SR; Chen H
    Biosens Bioelectron; 2009 Feb; 24(6):1757-64. PubMed ID: 18951013
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The influence of neuronal density and maturation on network activity of hippocampal cell cultures: a methodological study.
    Biffi E; Regalia G; Menegon A; Ferrigno G; Pedrocchi A
    PLoS One; 2013; 8(12):e83899. PubMed ID: 24386305
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new indirect co-culture set up of mouse hippocampal neurons and cortical astrocytes on microelectrode arrays.
    Geissler M; Faissner A
    J Neurosci Methods; 2012 Mar; 204(2):262-72. PubMed ID: 22182586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.