These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29993399)

  • 61. Principles of functional neural mapping using an intracortical ultra-density microelectrode array (ultra-density MEA).
    Guo L
    J Neural Eng; 2020 Jun; 17(3):036018. PubMed ID: 32365334
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Activity-dependent neuronal cell migration induced by electrical stimulation.
    Jeong SH; Jun SB; Song JK; Kim SJ
    Med Biol Eng Comput; 2009 Jan; 47(1):93-9. PubMed ID: 19034544
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Growing neuronal islands on multi-electrode arrays using an accurate positioning-μCP device.
    Samhaber R; Schottdorf M; El Hady A; Bröking K; Daus A; Thielemann C; Stühmer W; Wolf F
    J Neurosci Methods; 2016 Jan; 257():194-203. PubMed ID: 26432934
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cortical networks grown on microelectrode arrays as a biosensor for botulinum toxin.
    Scarlatos A; Cadotte AJ; DeMarse TB; Welt BA
    J Food Sci; 2008 Apr; 73(3):E129-36. PubMed ID: 18387107
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Extracellular potentials in low-density dissociated neuronal cultures.
    Claverol-Tinture E; Pine J
    J Neurosci Methods; 2002 May; 117(1):13-21. PubMed ID: 12084560
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Graphene microelectrode arrays for neural activity detection.
    Du X; Wu L; Cheng J; Huang S; Cai Q; Jin Q; Zhao J
    J Biol Phys; 2015 Sep; 41(4):339-47. PubMed ID: 25712492
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Early prediction of developing spontaneous activity in cultured neuronal networks.
    Cabrera-Garcia D; Warm D; de la Fuente P; Fernández-Sánchez MT; Novelli A; Villanueva-Balsera JM
    Sci Rep; 2021 Oct; 11(1):20407. PubMed ID: 34650146
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Recording place cells from multiple sub-regions of the rat hippocampus with a customized micro-electrode array.
    Xu H; Hsiao MC; Song D; Berger TW
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4876-9. PubMed ID: 25571084
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A low-noise, modular, and versatile analog front-end intended for processing in vitro neuronal signals detected by microelectrode arrays.
    Regalia G; Biffi E; Ferrigno G; Pedrocchi A
    Comput Intell Neurosci; 2015; 2015():172396. PubMed ID: 25977683
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Tracking burst patterns in hippocampal cultures with high-density CMOS-MEAs.
    Gandolfo M; Maccione A; Tedesco M; Martinoia S; Berdondini L
    J Neural Eng; 2010 Oct; 7(5):056001. PubMed ID: 20720282
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Microelectrode array analysis of hippocampal network dynamics following theta-burst stimulation via current source density reconstruction by Gaussian interpolation.
    Kim HB; Oh TI; Swanberg KM; Lee MB; Kim TW; Woo EJ; Park JH; Kwon OI
    J Neurosci Methods; 2016 May; 264():1-10. PubMed ID: 26880160
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Transient alterations in slow oscillations of hippocampal networks by low-frequency stimulations on multi-electrode arrays.
    Zhu G; Li X; Pu J; Chen W; Luo Q
    Biomed Microdevices; 2010 Feb; 12(1):153-8. PubMed ID: 19937128
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century.
    Johnstone AF; Gross GW; Weiss DG; Schroeder OH; Gramowski A; Shafer TJ
    Neurotoxicology; 2010 Aug; 31(4):331-50. PubMed ID: 20399226
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A multiplexed assay for determination of neurotoxicant effects on spontaneous network activity and viability from microelectrode arrays.
    Wallace K; Strickland JD; Valdivia P; Mundy WR; Shafer TJ
    Neurotoxicology; 2015 Jul; 49():79-85. PubMed ID: 26027956
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Simultaneous measurement of intracellular calcium and electrical activity from patterned neural networks in culture.
    Jimbo Y; Robinson HP; Kawana A
    IEEE Trans Biomed Eng; 1993 Aug; 40(8):804-10. PubMed ID: 8258447
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Design and Fabrication of a Three-Dimensional Multi-Electrode Array for Neuron Electrophysiology.
    Zuo L; Yu S; Briggs CA; Kantor S; Pan JY
    J Biomech Eng; 2017 Dec; 139(12):. PubMed ID: 28975276
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Propagating waves of activity in the neocortex: what they are, what they do.
    Wu JY; Xiaoying Huang ; Chuan Zhang
    Neuroscientist; 2008 Oct; 14(5):487-502. PubMed ID: 18997124
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characterizing the complexity of spontaneous electrical signals in cultured neuronal networks using approximate entropy.
    Chen L; Luo W; Deng Y; Wang Z; Zeng S
    IEEE Trans Inf Technol Biomed; 2009 May; 13(3):405-10. PubMed ID: 19174358
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays.
    Shein M; Greenbaum A; Gabay T; Sorkin R; David-Pur M; Ben-Jacob E; Hanein Y
    Biomed Microdevices; 2009 Apr; 11(2):495-501. PubMed ID: 19067173
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Skeletal myotube integration with planar microelectrode arrays in vitro for spatially selective recording and stimulation: a comparison of neuronal and myotube extracellular action potentials.
    Langhammer CG; Kutzing MK; Luo V; Zahn JD; Firestein BL
    Biotechnol Prog; 2011; 27(3):891-5. PubMed ID: 21574266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.