These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Cardiac rhythm analysis during ongoing cardiopulmonary resuscitation using the Analysis During Compressions with Fast Reconfirmation technology. Fumagalli F; Silver AE; Tan Q; Zaidi N; Ristagno G Heart Rhythm; 2018 Feb; 15(2):248-255. PubMed ID: 28917561 [TBL] [Abstract][Full Text] [Related]
5. Deep Neural Network Approach for Continuous ECG-Based Automated External Defibrillator Shock Advisory System During Cardiopulmonary Resuscitation. Hajeb-M S; Cascella A; Valentine M; Chon KH J Am Heart Assoc; 2021 Mar; 10(6):e019065. PubMed ID: 33663222 [TBL] [Abstract][Full Text] [Related]
6. A Robust Machine Learning Architecture for a Reliable ECG Rhythm Analysis during CPR. Isasi I; Irusta U; Elola A; Aramendi E; Eftestol T; Kramer-Johansen J; Wik L Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1903-1907. PubMed ID: 31946270 [TBL] [Abstract][Full Text] [Related]
7. A Machine Learning Shock Decision Algorithm for Use During Piston-Driven Chest Compressions. Isasi I; Irusta U; Elola A; Aramendi E; Ayala U; Alonso E; Kramer-Johansen J; Eftestol T IEEE Trans Biomed Eng; 2019 Jun; 66(6):1752-1760. PubMed ID: 30387719 [TBL] [Abstract][Full Text] [Related]
8. A least mean-square filter for the estimation of the cardiopulmonary resuscitation artifact based on the frequency of the compressions. Irusta U; Ruiz J; de Gauna SR; Eftestøl T; Kramer-Johansen J IEEE Trans Biomed Eng; 2009 Apr; 56(4):1052-62. PubMed ID: 19150778 [TBL] [Abstract][Full Text] [Related]
9. Identifying potentially shockable rhythms without interrupting cardiopulmonary resuscitation. Li Y; Bisera J; Geheb F; Tang W; Weil MH Crit Care Med; 2008 Jan; 36(1):198-203. PubMed ID: 18090359 [TBL] [Abstract][Full Text] [Related]
10. An Enhanced Adaptive Filtering Method for Suppressing Cardiopulmonary Resuscitation Artifact. Gong Y; Gao P; Wei L; Dai C; Zhang L; Li Y IEEE Trans Biomed Eng; 2017 Feb; 64(2):471-478. PubMed ID: 27168590 [TBL] [Abstract][Full Text] [Related]
11. Optimization of End-to-End Convolutional Neural Networks for Analysis of Out-of-Hospital Cardiac Arrest Rhythms during Cardiopulmonary Resuscitation. Jekova I; Krasteva V Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203701 [TBL] [Abstract][Full Text] [Related]
12. Automated Condition-Based Suppression of the CPR Artifact in ECG Data to Make a Reliable Shock Decision for AEDs during CPR. Hajeb-Mohammadalipour S; Cascella A; Valentine M; Chon KH Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960308 [TBL] [Abstract][Full Text] [Related]
13. Convolution Neural Network Algorithm for Shockable Arrhythmia Classification Within a Digitally Connected Automated External Defibrillator. Shen CP; Freed BC; Walter DP; Perry JC; Barakat AF; Elashery ARA; Shah KS; Kutty S; McGillion M; Ng FS; Khedraki R; Nayak KR; Rogers JD; Bhavnani SP J Am Heart Assoc; 2023 Apr; 12(8):e026974. PubMed ID: 36942628 [TBL] [Abstract][Full Text] [Related]
14. Fully automatic rhythm analysis during chest compression pauses. Ayala U; Irusta U; Ruiz J; Ruiz de Gauna S; González-Otero D; Alonso E; Kramer-Johansen J; Naas H; Eftestøl T Resuscitation; 2015 Apr; 89():25-30. PubMed ID: 25619441 [TBL] [Abstract][Full Text] [Related]
15. A reliable method for rhythm analysis during cardiopulmonary resuscitation. Ayala U; Irusta U; Ruiz J; Eftestøl T; Kramer-Johansen J; Alonso-Atienza F; Alonso E; González-Otero D Biomed Res Int; 2014; 2014():872470. PubMed ID: 24895621 [TBL] [Abstract][Full Text] [Related]
16. Removal of cardiopulmonary resuscitation artifacts with an enhanced adaptive filtering method: an experimental trial. Gong Y; Yu T; Chen B; He M; Li Y Biomed Res Int; 2014; 2014():140438. PubMed ID: 24795878 [TBL] [Abstract][Full Text] [Related]