These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 29993444)

  • 1. Inertial Sensing for Gait Event Detection and Transfemoral Prosthesis Control Strategy.
    Ledoux ED
    IEEE Trans Biomed Eng; 2018 Dec; 65(12):2704-2712. PubMed ID: 29993444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time gait event detection for lower limb amputees using a single wearable sensor.
    Maqbool HF; Husman MA; Awad MI; Abouhossein A; Mehryar P; Iqbal N; Dehghani-Sanij AA
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5067-5070. PubMed ID: 28269407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of gait parameters using leg velocity for amputee population.
    Aftab Z; Shad R
    PLoS One; 2022; 17(5):e0266726. PubMed ID: 35560138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait event detection using inertial measurement units in people with transfemoral amputation: a comparative study.
    Simonetti E; Villa C; Bascou J; Vannozzi G; Bergamini E; Pillet H
    Med Biol Eng Comput; 2020 Mar; 58(3):461-470. PubMed ID: 31873834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Real-Time Gait Event Detection for Lower Limb Prosthesis Control and Evaluation.
    Maqbool HF; Husman MAB; Awad MI; Abouhossein A; Iqbal N; Dehghani-Sanij AA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1500-1509. PubMed ID: 28114026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method for accurate division of the gait cycle into seven phases using shank angular velocity.
    Salminen M; Perttunen J; Avela J; Vehkaoja A
    Gait Posture; 2024 Jun; 111():1-7. PubMed ID: 38603967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees.
    Khademi G; Mohammadi H; Simon D
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intention detection of gait initiation using EMG and kinematic data.
    Wentink EC; Beijen SI; Hermens HJ; Rietman JS; Veltink PH
    Gait Posture; 2013 Feb; 37(2):223-8. PubMed ID: 22917647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IMU-based gait analysis in lower limb prosthesis users: Comparison of step demarcation algorithms.
    Bastas G; Fleck JJ; Peters RA; Zelik KE
    Gait Posture; 2018 Jul; 64():30-37. PubMed ID: 29807270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Adaptive Method for Gait Event Detection of Gait Rehabilitation Robots.
    Ye J; Wu H; Wu L; Long J; Zhang Y; Chen G; Wang C; Luo X; Hou Q; Xu Y
    Front Neurorobot; 2020; 14():38. PubMed ID: 32903323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Stride Time Variability in Unobtrusive Long-Term Monitoring Using Inertial Measurement Sensors.
    Lueken M; Kate WT; Valenti G; Batista JP; Bollheimer C; Leonhardt S; Ngo C
    IEEE J Biomed Health Inform; 2020 Jul; 24(7):1879-1886. PubMed ID: 32386168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of Gait Parameters for Transfemoral Amputees Using Lower Limb Kinematics and Deterministic Algorithms.
    Aftab Z; Ahmed G; Ali A; Gillani N
    Appl Bionics Biomech; 2022; 2022():2883026. PubMed ID: 36312314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time gait event detection for transfemoral amputees during ramp ascending and descending.
    Maqbool HF; Husman MA; Awad MI; Abouhossein A; Dehghani-Sanij AA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4785-8. PubMed ID: 26737364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is there a trade-off between economy and task goal variability in transfemoral amputee gait?
    Lee IC; Fylstra BL; Liu M; Lenzi T; Huang H
    J Neuroeng Rehabil; 2022 Mar; 19(1):29. PubMed ID: 35300696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on Terrain Identification of the Smart Prosthetic Ankle by Fuzzy Logic.
    Chang M; Kim K; Jeon D
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1801-1809. PubMed ID: 31398124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative evaluation of oxygen consumption and gait pattern in amputees using Intelligent Prostheses and conventionally damped knee swing-phase control.
    Datta D; Heller B; Howitt J
    Clin Rehabil; 2005 Jun; 19(4):398-403. PubMed ID: 15929508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson's Disease patients.
    Romijnders R; Warmerdam E; Hansen C; Welzel J; Schmidt G; Maetzler W
    J Neuroeng Rehabil; 2021 Feb; 18(1):28. PubMed ID: 33549105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Running with a powered knee and ankle prosthesis.
    Shultz AH; Lawson BE; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):403-12. PubMed ID: 25020138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding responses to gait instability from plantar pressure measurement and the relationship to balance and mobility in lower-limb amputees.
    Howcroft J; Lemaire ED; Kofman J; Kendell C
    Clin Biomech (Bristol); 2016 Feb; 32():241-8. PubMed ID: 26651474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.