BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29993449)

  • 1. Is EMG a Viable Alternative to BCI for Detecting Movement Intention in Severe Stroke?
    Balasubramanian S; Garcia-Cossio E; Birbaumer N; Burdet E; Ramos-Murguialday A
    IEEE Trans Biomed Eng; 2018 Dec; 65(12):2790-2797. PubMed ID: 29993449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic investigation of detectors for low signal-to-noise ratio EMG signals.
    Yuvaraj M; Raja P; David A; Burdet E; Skm V; Balasubramanian S
    F1000Res; 2023; 12():429. PubMed ID: 38585226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation.
    Chowdhury A; Raza H; Meena YK; Dutta A; Prasad G
    J Neurosci Methods; 2019 Jan; 312():1-11. PubMed ID: 30452976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid EEG-EMG BMI improves the detection of movement intention in cortical stroke patients with complete hand paralysis.
    Loopez-Larraz E; Birbaumer N; Ramos-Murguialday A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2000-2003. PubMed ID: 30440792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training wrist extensor function and detecting unwanted movement strategies in an EMG-controlled visuomotor task.
    Lyu M; Lambelet C; Woolley D; Zhang X; Chen W; Ding X; Gassert R; Wenderoth N
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1549-1555. PubMed ID: 28814040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influential Factors of an Asynchronous BCI for Movement Intention Detection.
    Rodpongpun S; Janyalikit T; Ratanamahatana CA
    Comput Math Methods Med; 2020; 2020():8573754. PubMed ID: 32273902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting intention to walk in stroke patients from pre-movement EEG correlates.
    Sburlea AI; Montesano L; Cano de la Cuerda R; Alguacil Diego IM; Miangolarra-Page JC; Minguez J
    J Neuroeng Rehabil; 2015 Dec; 12():113. PubMed ID: 26654594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding Upper Limb Movement Attempt From EEG Measurements of the Contralesional Motor Cortex in Chronic Stroke Patients.
    Antelis JM; Montesano L; Ramos-Murguialday A; Birbaumer N; Minguez J
    IEEE Trans Biomed Eng; 2017 Jan; 64(1):99-111. PubMed ID: 27046866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients.
    Sarasola-Sanz A; Irastorza-Landa N; Lopez-Larraz E; Bibian C; Helmhold F; Broetz D; Birbaumer N; Ramos-Murguialday A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():895-900. PubMed ID: 28813934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of artifacts on movement intention decoding from EEG activity in severely paralyzed stroke patients.
    Lopez-Larraz E; Bibian C; Birbaumer N; Ramos-Murguialday A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():901-906. PubMed ID: 28813935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling pre-movement sensorimotor rhythm can improve finger extension after stroke.
    Norman SL; McFarland DJ; Miner A; Cramer SC; Wolbrecht ET; Wolpaw JR; Reinkensmeyer DJ
    J Neural Eng; 2018 Oct; 15(5):056026. PubMed ID: 30063219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the design of EEG-based movement decoders for completely paralyzed stroke patients.
    Spüler M; López-Larraz E; Ramos-Murguialday A
    J Neuroeng Rehabil; 2018 Nov; 15(1):110. PubMed ID: 30458838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feature domain-specific movement intention detection for stroke rehabilitation with brain-computer interfaces.
    Hadsund JT; Sorensen MB; Royo AC; Niazi IK; Rovsing H; Rovsing C; Jochumsen M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5725-5728. PubMed ID: 28269555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of gait intention from pre-movement EEG signals: a feasibility study.
    Shafiul Hasan SM; Siddiquee MR; Atri R; Ramon R; Marquez JS; Bai O
    J Neuroeng Rehabil; 2020 Apr; 17(1):50. PubMed ID: 32299460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding Sensorimotor Rhythms during Robotic-Assisted Treadmill Walking for Brain Computer Interface (BCI) Applications.
    García-Cossio E; Severens M; Nienhuis B; Duysens J; Desain P; Keijsers N; Farquhar J
    PLoS One; 2015; 10(12):e0137910. PubMed ID: 26675472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review of Techniques for Detection of Movement Intention Using Movement-Related Cortical Potentials.
    Shakeel A; Navid MS; Anwar MN; Mazhar S; Jochumsen M; Niazi IK
    Comput Math Methods Med; 2015; 2015():346217. PubMed ID: 26881008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of a new application of noninvasive Brain Computer Interface (BCI): a case study of training for recovery of volitional motor control after stroke.
    Daly JJ; Cheng R; Rogers J; Litinas K; Hrovat K; Dohring M
    J Neurol Phys Ther; 2009 Dec; 33(4):203-11. PubMed ID: 20208465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke.
    Várkuti B; Guan C; Pan Y; Phua KS; Ang KK; Kuah CW; Chua K; Ang BT; Birbaumer N; Sitaram R
    Neurorehabil Neural Repair; 2013 Jan; 27(1):53-62. PubMed ID: 22645108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.