These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29993517)

  • 1. Cross-Frequency Transfer Entropy Characterize Coupling of Interacting Nonlinear Oscillators in Complex Systems.
    Shi W; Yeh CH; Hong Y
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):521-529. PubMed ID: 29993517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-Channel Phase-Amplitude Transfer Entropy Conceptualize Long-Range Transmission in sleep: a case study.
    Shi W; Yeh CH; An J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4048-4051. PubMed ID: 31946761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep Dynamic Analysis Technology Based on Cross-Phase-Amplitude Transfer Entropy in Multiple Brain Regions.
    Wang Y; Shi W; Yeh CH
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2953-2956. PubMed ID: 36086398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topology, Cross-Frequency, and Same-Frequency Band Interactions Shape the Generation of Phase-Amplitude Coupling in a Neural Mass Model of a Cortical Column.
    Sotero RC
    PLoS Comput Biol; 2016 Nov; 12(11):e1005180. PubMed ID: 27802274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying Phase-Amplitude Coupling in Cyclic Alternating Pattern using Masking Signals.
    Yeh CH; Shi W
    Sci Rep; 2018 Feb; 8(1):2649. PubMed ID: 29422509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Horizontal visibility graph transfer entropy (HVG-TE): A novel metric to characterize directed connectivity in large-scale brain networks.
    Yu M; Hillebrand A; Gouw AA; Stam CJ
    Neuroimage; 2017 Aug; 156():249-264. PubMed ID: 28539247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions.
    Pittman-Polletta B; Hsieh WH; Kaur S; Lo MT; Hu K
    J Neurosci Methods; 2014 Apr; 226():15-32. PubMed ID: 24452055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis and modeling of time-variant amplitude-frequency couplings of and between oscillations of EEG bursts.
    Witte H; Putsche P; Hemmelmann C; Schelenz C; Leistritz L
    Biol Cybern; 2008 Aug; 99(2):139-57. PubMed ID: 18688638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symbolic transfer entropy: inferring directionality in biosignals.
    Staniek M; Lehnertz K
    Biomed Tech (Berl); 2009 Dec; 54(6):323-8. PubMed ID: 19938889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instantaneous Transfer Entropy for the Study of Cardiovascular and Cardiorespiratory Nonstationary Dynamics.
    Valenza G; Faes L; Citi L; Orini M; Barbieri R
    IEEE Trans Biomed Eng; 2018 May; 65(5):1077-1085. PubMed ID: 28816654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-clustering bias in phase-amplitude cross-frequency coupling and its removal.
    van Driel J; Cox R; Cohen MX
    J Neurosci Methods; 2015 Oct; 254():60-72. PubMed ID: 26231622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches.
    Lowet E; Roberts MJ; Bonizzi P; Karel J; De Weerd P
    PLoS One; 2016; 11(1):e0146443. PubMed ID: 26745498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confounding effects of indirect connections on causality estimation.
    Vakorin VA; Krakovska OA; McIntosh AR
    J Neurosci Methods; 2009 Oct; 184(1):152-60. PubMed ID: 19628006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation.
    Azami H; Escudero J
    Comput Methods Programs Biomed; 2016 May; 128():40-51. PubMed ID: 27040830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-Frequency Based Phase-Amplitude Coupling Measure For Neuronal Oscillations.
    Munia TTK; Aviyente S
    Sci Rep; 2019 Aug; 9(1):12441. PubMed ID: 31455811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the interaction between heart rate variability and sleep EEG using nonlinear algorithms.
    Yeh JR; Peng CK; Lo MT; Yeh CH; Chen SC; Wang CY; Lee PL; Kang JH
    J Neurosci Methods; 2013 Oct; 219(2):233-9. PubMed ID: 23965234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially distributed patterns of oscillatory coupling between high-frequency amplitudes and low-frequency phases in human iEEG.
    Maris E; van Vugt M; Kahana M
    Neuroimage; 2011 Jan; 54(2):836-50. PubMed ID: 20851192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved phase-amplitude coupling in neural oscillations.
    Samiee S; Baillet S
    Neuroimage; 2017 Oct; 159():270-279. PubMed ID: 28757194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward a proper estimation of phase-amplitude coupling in neural oscillations.
    Dvorak D; Fenton AA
    J Neurosci Methods; 2014 Mar; 225():42-56. PubMed ID: 24447842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directional patterns of cross frequency phase and amplitude coupling within the resting state mimic patterns of fMRI functional connectivity.
    Weaver KE; Wander JD; Ko AL; Casimo K; Grabowski TJ; Ojemann JG; Darvas F
    Neuroimage; 2016 Mar; 128():238-251. PubMed ID: 26747745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.