These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 29993523)

  • 1. Ballistocardiogram-Based Approach to Cuffless Blood Pressure Monitoring: Proof of Concept and Potential Challenges.
    Kim CS; Carek AM; Inan OT; Mukkamala R; Hahn JO
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2384-2391. PubMed ID: 29993523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ballistocardiogram as Proximal Timing Reference for Pulse Transit Time Measurement: Potential for Cuffless Blood Pressure Monitoring.
    Kim CS; Carek AM; Mukkamala R; Inan OT; Hahn JO
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2657-64. PubMed ID: 26054058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Chair-Based Unconstrained/Nonintrusive Cuffless Blood Pressure Monitoring System Using a Two-Channel Ballistocardiogram.
    Lee KJ; Roh J; Cho D; Hyeong J; Kim S
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30708934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of systolic blood pressure by Random Forest using heart sounds and a ballistocardiogram.
    Gonzalez-Landaeta R; Ramirez B; Mejia J
    Sci Rep; 2022 Oct; 12(1):17196. PubMed ID: 36229644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous cuffless and non-invasive measurement of arterial blood pressure-concepts and future perspectives.
    Pilz N; Patzak A; Bothe TL
    Blood Press; 2022 Dec; 31(1):254-269. PubMed ID: 36184775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of cuff-based and cuffless continuous blood pressure measurements in children and adolescents.
    Zachwieja J; Neyman-Bartkowiak A; Rabiega A; Wojciechowska M; Barabasz M; Musielak A; Silska-Dittmar M; Ostalska-Nowicka D
    Clin Exp Hypertens; 2020 Aug; 42(6):512-518. PubMed ID: 31941385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-source PPG-based local pulse wave velocity measurement: a potential cuffless blood pressure estimation technique.
    Nabeel PM; Jayaraj J; Mohanasankar S
    Physiol Meas; 2017 Nov; 38(12):2122-2140. PubMed ID: 29058686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Potential of Wearable Limb Ballistocardiogram in Blood Pressure Monitoring via Pulse Transit Time.
    Yousefian P; Shin S; Mousavi A; Kim CS; Mukkamala R; Jang DG; Ko BH; Lee J; Kwon UK; Kim YH; Hahn JO
    Sci Rep; 2019 Jul; 9(1):10666. PubMed ID: 31337783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring.
    Kachuee M; Kiani MM; Mohammadzade H; Shabany M
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):859-869. PubMed ID: 27323356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bi-Modal Arterial Compliance Probe for Calibration-Free Cuffless Blood Pressure Estimation.
    P M N; Joseph J; Karthik S; Sivaprakasam M; Chenniappan M
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2392-2404. PubMed ID: 30130174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Tracking of Changes in Systolic Blood Pressure using BCG and ECG.
    He S; Dajani HR; Meade RD; Kenny GP; Bolic M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6826-6829. PubMed ID: 31947408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood Pressure Estimation Using Pulse Transit Time From Bioimpedance and Continuous Wave Radar.
    Buxi D; Redout JM; Yuce MR
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):917-927. PubMed ID: 27337707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of 24-hour ambulatory blood pressure monitoring by a novel cuffless device in clinical practice.
    Krisai P; Vischer AS; Kilian L; Meienberg A; Mayr M; Burkard T
    Heart; 2019 Mar; 105(5):399-405. PubMed ID: 30228251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous cuffless blood pressure monitoring using photoplethysmography-based PPG2BP-net for high intrasubject blood pressure variations.
    Joung J; Jung CW; Lee HC; Chae MJ; Kim HS; Park J; Shin WY; Kim C; Lee M; Choi C
    Sci Rep; 2023 May; 13(1):8605. PubMed ID: 37244974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Gholamhosseini H; Baig M; Rastegar S; Lindén M
    Stud Health Technol Inform; 2018; 249():77-83. PubMed ID: 29866960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of transit time-based models in wearable central aortic blood pressure estimation.
    Fierro G; Armentano R; Silveira F
    Biomed Phys Eng Express; 2020 Mar; 6(3):035006. PubMed ID: 33438651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cuffless Blood Pressure Measurement.
    Mukkamala R; Stergiou GS; Avolio AP
    Annu Rev Biomed Eng; 2022 Jun; 24():203-230. PubMed ID: 35363536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Unified Approach to Wearable Ballistocardiogram Gating and Wave Localization.
    Shin S; Yousefian P; Mousavi AS; Kim CS; Mukkamala R; Jang DG; Ko BH; Lee J; Kwon UK; Kim YH; Hahn JO
    IEEE Trans Biomed Eng; 2021 Apr; 68(4):1115-1122. PubMed ID: 32746068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Real-Time Cuffless Blood Pressure Measurement Systems with ECG Electrodes and a Microphone Using Pulse Transit Time (PTT).
    Choi J; Kang Y; Park J; Joung Y; Koo C
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Ding XR; Zhang YT; Liu J; Dai WX; Tsang HK
    IEEE Trans Biomed Eng; 2016 May; 63(5):964-972. PubMed ID: 26415147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.