These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 29993523)
21. Novel blood pressure and pulse pressure estimation based on pulse transit time and stroke volume approximation. Lee J; Sohn J; Park J; Yang S; Lee S; Kim HC Biomed Eng Online; 2018 Jun; 17(1):81. PubMed ID: 29914491 [TBL] [Abstract][Full Text] [Related]
22. Cuffless Estimation of Blood Pressure: Importance of Variability in Blood Pressure Dependence of Arterial Stiffness Across Individuals and Measurement Sites. Butlin M; Shirbani F; Barin E; Tan I; Spronck B; Avolio AP IEEE Trans Biomed Eng; 2018 Nov; 65(11):2377-2383. PubMed ID: 29993392 [TBL] [Abstract][Full Text] [Related]
23. Cuffless Blood Pressure Monitoring from an Array of Wrist Bio-Impedance Sensors Using Subject-Specific Regression Models: Proof of Concept. Ibrahim B; Jafari R IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1723-1735. PubMed ID: 31603828 [TBL] [Abstract][Full Text] [Related]
24. Noninvasive cuffless blood pressure estimation using pulse transit time, Womersley number, and photoplethysmogram intensity ratio. Thambiraj G; Gandhi U; Devanand V; Mangalanathan U Physiol Meas; 2019 Jul; 40(7):075001. PubMed ID: 31051486 [TBL] [Abstract][Full Text] [Related]
25. Improved Blood Pressure Prediction Using Systolic Flow Correction of Pulse Wave Velocity. Lillie JS; Liberson AS; Borkholder DA Cardiovasc Eng Technol; 2016 Dec; 7(4):439-447. PubMed ID: 27730533 [TBL] [Abstract][Full Text] [Related]
26. Monitoring the Relative Blood Pressure Using a Hydraulic Bed Sensor System. Su BY; Enayati M; Ho KC; Skubic M; Despins L; Keller J; Popescu M; Guidoboni G; Rantz M IEEE Trans Biomed Eng; 2019 Mar; 66(3):740-748. PubMed ID: 30010544 [TBL] [Abstract][Full Text] [Related]
27. Pulse Transit Time Based Continuous Cuffless Blood Pressure Estimation: A New Extension and A Comprehensive Evaluation. Ding X; Yan BP; Zhang YT; Liu J; Zhao N; Tsang HK Sci Rep; 2017 Sep; 7(1):11554. PubMed ID: 28912525 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of the Accuracy of Cuffless Blood Pressure Measurement Devices: Challenges and Proposals. Mukkamala R; Yavarimanesh M; Natarajan K; Hahn JO; Kyriakoulis KG; Avolio AP; Stergiou GS Hypertension; 2021 Nov; 78(5):1161-1167. PubMed ID: 34510915 [TBL] [Abstract][Full Text] [Related]
29. Cuffless blood pressure estimation from the carotid pulse arrival time using continuous wave radar. Buxi D; Redoute JM; Yuce MR Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5704-7. PubMed ID: 26737587 [TBL] [Abstract][Full Text] [Related]
30. CiGNN: A Causality-Informed and Graph Neural Network Based Framework for Cuffless Continuous Blood Pressure Estimation. Liu L; Lu H; Whelan M; Chen Y; Ding X IEEE J Biomed Health Inform; 2024 May; 28(5):2674-2686. PubMed ID: 38478458 [TBL] [Abstract][Full Text] [Related]
31. OVAR-BPnet: A General Pulse Wave Deep Learning Approach for Cuffless Blood Pressure Measurement. Cen Y; Luo J; Wang H; Chen L; Zhu X; Guo S; Luo J IEEE J Biomed Health Inform; 2024 Oct; 28(10):5829-5841. PubMed ID: 38963748 [TBL] [Abstract][Full Text] [Related]
32. Noninvasive monitoring of blood pressure using optical Ballistocardiography and Photoplethysmograph approaches. Chen Z; Yang X; Teo JT; Ng SH Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2425-8. PubMed ID: 24110216 [TBL] [Abstract][Full Text] [Related]
33. The Microsoft Research Aurora Project: Important Findings on Cuffless Blood Pressure Measurement. Mukkamala R; Shroff SG; Landry C; Kyriakoulis KG; Avolio AP; Stergiou GS Hypertension; 2023 Mar; 80(3):534-540. PubMed ID: 36458550 [TBL] [Abstract][Full Text] [Related]
34. A chair for cuffless real-time estimation of systolic blood pressure based on pulse transit time. Tang Z; Sekine M; Tamura T; Yoshida M; Chen W Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5118-21. PubMed ID: 26737443 [TBL] [Abstract][Full Text] [Related]
35. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals. Zhang Q; Zhou D; Zeng X Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774 [TBL] [Abstract][Full Text] [Related]
36. Inverse-model-based cuffless blood pressure estimation using a single photoplethysmography sensor. Suzuki A Proc Inst Mech Eng H; 2015 Jul; 229(7):499-505. PubMed ID: 26040284 [TBL] [Abstract][Full Text] [Related]
37. Blood Pressure Monitoring System Using a Two-Channel Ballistocardiogram and Convolutional Neural Networks. Seok W; Lee KJ; Cho D; Roh J; Kim S Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33806118 [TBL] [Abstract][Full Text] [Related]
38. Mitigation of Instrument-Dependent Variability in Ballistocardiogram Morphology: Case Study on Force Plate and Customized Weighing Scale. Yao Y; Ghasemi Z; Shandhi MMH; Ashouri H; Xu L; Mukkamala R; Inan OT; Hahn JO IEEE J Biomed Health Inform; 2020 Jan; 24(1):69-78. PubMed ID: 30802877 [TBL] [Abstract][Full Text] [Related]
39. End-to-End Deep Learning Architecture for Continuous Blood Pressure Estimation Using Attention Mechanism. Eom H; Lee D; Han S; Hariyani YS; Lim Y; Sohn I; Park K; Park C Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32325970 [TBL] [Abstract][Full Text] [Related]
40. Non-invasive continuous blood pressure measurement based on mean impact value method, BP neural network, and genetic algorithm. Tan X; Ji Z; Zhang Y Technol Health Care; 2018; 26(S1):87-101. PubMed ID: 29758957 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]