These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Shear Wave Speed Measurements Using Crawling Wave Sonoelastography and Single Tracking Location Shear Wave Elasticity Imaging for Tissue Characterization. Ormachea J; Lavarello RJ; McAleavey SA; Parker KJ; Castaneda B IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1351-1360. PubMed ID: 27295662 [TBL] [Abstract][Full Text] [Related]
6. Measurement of Liver Stiffness Using Shear Wave Elastography in a Rat Model: Factors Impacting Stiffness Measurement with Multiple- and Single-Tracking-Location Techniques. Langdon JH; Elegbe E; Gonzalez RS; Osapoetra L; Ford T; McAleavey SA Ultrasound Med Biol; 2017 Nov; 43(11):2629-2639. PubMed ID: 28830643 [TBL] [Abstract][Full Text] [Related]
7. Single- and multiple-track-location shear wave and acoustic radiation force impulse imaging: matched comparison of contrast, contrast-to-noise ratio and resolution. Hollender PJ; Rosenzweig SJ; Nightingale KR; Trahey GE Ultrasound Med Biol; 2015 Apr; 41(4):1043-57. PubMed ID: 25701531 [TBL] [Abstract][Full Text] [Related]
9. Single tracking location acoustic radiation force impulse viscoelasticity estimation (STL-VE): A method for measuring tissue viscoelastic parameters. Langdon JH; Elegbe E; McAleavey SA IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1225-44. PubMed ID: 26168170 [TBL] [Abstract][Full Text] [Related]
10. On the Role of Coherent Plane Wave Compounding in Shear Wave Elasticity Imaging: The Convolution Effect and Its Implications. Xiao Y; Jin J; Yuan Y; Zhao Y; Li D Ultrasound Med Biol; 2024 Feb; 50(2):198-206. PubMed ID: 37923679 [TBL] [Abstract][Full Text] [Related]
12. Scanned 3-D Intracardiac ARFI and SWEI for Imaging Radio-Frequency Ablation Lesions. Hollender P; Kuo L; Chen V; Eyerly S; Wolf P; Trahey G IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jul; 64(7):1034-1044. PubMed ID: 28410102 [TBL] [Abstract][Full Text] [Related]
13. Quantifying the Impact of Imaging Through Body Walls on Shear Wave Elasticity Measurements. Zhang B; Bottenus N; Jin FQ; Nightingale KR Ultrasound Med Biol; 2023 Mar; 49(3):734-749. PubMed ID: 36564217 [TBL] [Abstract][Full Text] [Related]
14. Shear Induced Non-Linear Elasticity Imaging: Elastography for Compound Deformations. Goswami S; Ahmed R; Khan S; Doyley MM; McAleavey SA IEEE Trans Med Imaging; 2020 Nov; 39(11):3559-3570. PubMed ID: 32746104 [TBL] [Abstract][Full Text] [Related]
15. Visualizing the radial and circumferential strain distribution within vessel phantoms using synthetic-aperture ultrasound elastography. Korukonda S; Doyley MM IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1639-53. PubMed ID: 22899112 [TBL] [Abstract][Full Text] [Related]
16. Ultrasonic Shear Wave Elasticity Imaging Sequencing and Data Processing Using a Verasonics Research Scanner. Deng Y; Rouze NC; Palmeri ML; Nightingale KR IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):164-176. PubMed ID: 28092508 [TBL] [Abstract][Full Text] [Related]
17. Scholte wave generation during single tracking location shear wave elasticity imaging of engineered tissues. Mercado KP; Langdon J; Helguera M; McAleavey SA; Hocking DC; Dalecki D J Acoust Soc Am; 2015 Aug; 138(2):EL138-44. PubMed ID: 26328739 [TBL] [Abstract][Full Text] [Related]
18. Shear-wave elasticity imaging of a liver fibrosis mouse model using high-frequency ultrasound. Yeh CL; Chen BR; Tseng LY; Jao P; Su TH; Li PC IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1295-307. PubMed ID: 26168176 [TBL] [Abstract][Full Text] [Related]
19. Evaluating the Improvement in Shear Wave Speed Image Quality Using Multidimensional Directional Filters in the Presence of Reflection Artifacts. Lipman SL; Rouze NC; Palmeri ML; Nightingale KR IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Aug; 63(8):1049-1063. PubMed ID: 28458448 [TBL] [Abstract][Full Text] [Related]