These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29993559)

  • 1. A Multichannel High-Frequency Power-Isolated Neural Stimulator With Crosstalk Reduction.
    Jiang D; Demosthenous A
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):940-953. PubMed ID: 29993559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 16-Channel biphasic current-mode programmable charge balanced neural stimulation.
    Li X; Zhong S; Morizio J
    Biomed Eng Online; 2017 Aug; 16(1):104. PubMed ID: 28806960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Power-Efficient Multichannel Neural Stimulator Using High-Frequency Pulsed Excitation From an Unfiltered Dynamic Supply.
    van Dongen MN; Serdijn WA
    IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):61-71. PubMed ID: 25438324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.
    Hsu WY; Schmid A
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):878-888. PubMed ID: 28715337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active books: the design of an implantable stimulator that minimizes cable count using integrated circuits very close to electrodes.
    Liu X; Demosthenous A; Vanhoestenberghe A; Jiang D; Donaldson N
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):216-27. PubMed ID: 23853144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis.
    Williams I; Constandinou T
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):129-39. PubMed ID: 23853295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A High-Voltage-Tolerant and Precise Charge-Balanced Neuro-Stimulator in Low Voltage CMOS Process.
    Luo Z; Ker MD
    IEEE Trans Biomed Circuits Syst; 2016 Dec; 10(6):1087-1099. PubMed ID: 27046880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multi-Channel Stimulator With High-Resolution Time-to-Current Conversion for Vagal-Cardiac Neuromodulation.
    Wu Y; Jiang D; Demosthenous A
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1186-1195. PubMed ID: 34982691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A low-cost multichannel wireless neural stimulation system for freely roaming animals.
    Alam M; Chen X; Fernandez E
    J Neural Eng; 2013 Dec; 10(6):066010. PubMed ID: 24162159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of Dual-Configuration Dual-Mode Stimulator in Low-Voltage CMOS Process for Neuro-Modulation.
    Hsieh CC; Wu YH; Ker MD
    IEEE Trans Biomed Circuits Syst; 2023 Apr; 17(2):273-285. PubMed ID: 37027548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fully Integrated, Power-Efficient, 0.07-2.08 mA, High-Voltage Neural Stimulator in a Standard CMOS Process.
    Palomeque-Mangut D; Rodríguez-Vázquez Á; Delgado-Restituto M
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multichannel current stimulator chip for spatiotemporal pattern stimulation of neural tissues.
    Kameda S; Hayashida Y; Tanaka Y; Akita D; Yagi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5011-5. PubMed ID: 25571118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A vestibular prosthesis with highly-isolated parallel multichannel stimulation.
    Jiang D; Cirmirakis D; Demosthenous A
    IEEE Trans Biomed Circuits Syst; 2015 Feb; 9(1):124-37. PubMed ID: 25073175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a Switched-Capacitor based Stimulator for efficient deep-brain stimulation.
    Vidal J; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2927-30. PubMed ID: 21095987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 3-mV Precision Dual-Mode-Controlled Fast Charge Balancing for Implantable Biphasic Neural Stimulators.
    Cui K; Jin Y; Fan X; Ma Y
    IEEE Trans Biomed Circuits Syst; 2024 Aug; 18(4):896-907. PubMed ID: 38393848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A charge-metering method for voltage-mode neural stimulation.
    Luan S; Constandinou TG
    J Neurosci Methods; 2014 Mar; 224():39-47. PubMed ID: 24360970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A precise charge balancing and compliance voltage monitoring stimulator front-end for 1024-electrodes retinal prosthesis.
    Chun H; Tran N; Yang Y; Kavehei O; Bai S; Skafidas S
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3001-4. PubMed ID: 23366556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fully-integrated high-compliance voltage SoC for epi-retinal and neural prostheses.
    Lo YK; Chen K; Gad P; Liu W
    IEEE Trans Biomed Circuits Syst; 2013 Dec; 7(6):761-72. PubMed ID: 24473541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arbitrary-Waveform Electro-Optical Intracranial Neurostimulator With Load-Adaptive High-Voltage Compliance.
    Kassiri H; Chen F; Salam MT; Chang M; Vatankhahghadim B; Carlen P; Valiante TA; Genov R
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):582-593. PubMed ID: 30802868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-impedance characterization technique with implantable neural stimulator using biphasic current stimulus.
    Lo YK; Chang CW; Liu W
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():474-7. PubMed ID: 25569999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.