BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29993573)

  • 1. Corneal Endothelial Cell Segmentation by Classifier-Driven Merging of Oversegmented Images.
    Vigueras-Guillen JP; Andrinopoulou ER; Engel A; Lemij HG; van Rooij J; Vermeer KA; van Vliet LJ
    IEEE Trans Med Imaging; 2018 Oct; 37(10):2278-2289. PubMed ID: 29993573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of applied corneal endothelium image segmentation techniques on the clinical parameters.
    Piorkowski A; Nurzynska K; Gronkowska-Serafin J; Selig B; Boldak C; Reska D
    Comput Med Imaging Graph; 2017 Jan; 55():13-27. PubMed ID: 27553657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Reliable Automated Algorithm for the Morphometric Analysis of Human Corneal Endothelium.
    Scarpa F; Ruggeri A
    Cornea; 2016 Sep; 35(9):1222-8. PubMed ID: 27310881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy.
    Selig B; Vermeer KA; Rieger B; Hillenaar T; Luengo Hendriks CL
    BMC Med Imaging; 2015 Apr; 15():13. PubMed ID: 25928199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphometry of organ cultured corneal endothelium using Voronoi segmentation.
    Brookes NH
    Cell Tissue Bank; 2017 Jun; 18(2):167-183. PubMed ID: 28374155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully convolutional architecture vs sliding-window CNN for corneal endothelium cell segmentation.
    Vigueras-Guillén JP; Sari B; Goes SF; Lemij HG; van Rooij J; Vermeer KA; van Vliet LJ
    BMC Biomed Eng; 2019; 1():4. PubMed ID: 32903308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fully automated cell segmentation and morphometric parameter system for quantifying corneal endothelial cell morphology.
    Al-Fahdawi S; Qahwaji R; Al-Waisy AS; Ipson S; Ferdousi M; Malik RA; Brahma A
    Comput Methods Programs Biomed; 2018 Jul; 160():11-23. PubMed ID: 29728238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A system for the automatic estimation of morphometric parameters of corneal endothelium in alizarine red-stained images.
    Ruggeri A; Scarpa F; De Luca M; Meltendorf C; Schroeter J
    Br J Ophthalmol; 2010 May; 94(5):643-7. PubMed ID: 20447967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of endothelial cell count using confocal and contact specular microscopy.
    Klais CM; Bühren J; Kohnen T
    Ophthalmologica; 2003; 217(2):99-103. PubMed ID: 12592045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated morphometric description of human corneal endothelium from in-vivo specular and confocal microscopy.
    Scarpa F; Ruggeri A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1296-1299. PubMed ID: 28268563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An automatic approach for cell detection and segmentation of corneal endothelium in specular microscope.
    Karmakar R; Nooshabadi S; Eghrari A
    Graefes Arch Clin Exp Ophthalmol; 2022 Apr; 260(4):1215-1224. PubMed ID: 34741660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated segmentation of the corneal endothelium in a large set of 'real-world' specular microscopy images using the U-Net architecture.
    Daniel MC; Atzrodt L; Bucher F; Wacker K; Böhringer S; Reinhard T; Böhringer D
    Sci Rep; 2019 Mar; 9(1):4752. PubMed ID: 30894636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelial cells analysis with the TOPCON specular microscope SP-2000P and IMAGEnet system.
    Cheung SW; Cho P
    Curr Eye Res; 2000 Oct; 21(4):788-98. PubMed ID: 11120569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unbiased corneal tissue analysis using Gabor-domain optical coherence microscopy and machine learning for automatic segmentation of corneal endothelial cells.
    Canavesi C; Cogliati A; Hindman HB
    J Biomed Opt; 2020 Aug; 25(9):1-17. PubMed ID: 32770867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmentation of corneal endothelium images using a U-Net-based convolutional neural network.
    Fabijańska A
    Artif Intell Med; 2018 Jun; 88():1-13. PubMed ID: 29680687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Noncontact Specular and Confocal Microscopy for Evaluation of Corneal Endothelium.
    Huang J; Maram J; Tepelus TC; Sadda SR; Chopra V; Lee OL
    Eye Contact Lens; 2018 Sep; 44 Suppl 1():S144-S150. PubMed ID: 28346276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of repeatability for the automatic estimation of endothelial cell density in donor corneas.
    Ruggeri A; Grisan E; Schroeter J
    Br J Ophthalmol; 2007 Sep; 91(9):1213-5. PubMed ID: 17431018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo three-dimensional reconstruction of the cornea from confocal microscopy images.
    Scarpa F; Fiorin D; Ruggeri A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():747-50. PubMed ID: 18002064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DenseUNets with feedback non-local attention for the segmentation of specular microscopy images of the corneal endothelium with guttae.
    Vigueras-Guillén JP; van Rooij J; van Dooren BTH; Lemij HG; Islamaj E; van Vliet LJ; Vermeer KA
    Sci Rep; 2022 Aug; 12(1):14035. PubMed ID: 35982194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmentation of endothelial cells of the cornea from the distance map of confocal microscope images.
    Herrera-Pereda R; Crispi AT; Babin D; Philips W
    Comput Biol Med; 2021 Dec; 139():104953. PubMed ID: 34735943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.