These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 29993700)

  • 1. Neural-Dynamic Optimization-Based Model Predictive Control for Tracking and Formation of Nonholonomic Multirobot Systems.
    Li Z; Yuan W; Chen Y; Ke F; Chu X; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):6113-6122. PubMed ID: 29993700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal Formation of Multirobot Systems Based on a Recurrent Neural Network.
    Wang Y; Cheng L; Hou ZG; Yu J; Tan M
    IEEE Trans Neural Netw Learn Syst; 2016 Feb; 27(2):322-33. PubMed ID: 26316224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation Control and Tracking of Mobile Robots using Distributed Estimators and A Biologically Inspired Approach.
    Moorthy S; Joo YH
    J Electr Eng Technol; 2023; 18(3):2231-2244. PubMed ID: 37125221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connectivity-Preserving Approach for Distributed Adaptive Synchronized Tracking of Networked Uncertain Nonholonomic Mobile Robots.
    Yoo SJ; Park BS
    IEEE Trans Cybern; 2018 Sep; 48(9):2598-2608. PubMed ID: 28885169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive PID formation control of nonholonomic robots without leader's velocity information.
    Shen D; Sun W; Sun Z
    ISA Trans; 2014 Mar; 53(2):474-80. PubMed ID: 24388355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Nonlinear Model Predictive Control Based on Adaptive Dynamic Programming.
    Dong L; Yan J; Yuan X; He H; Sun C
    IEEE Trans Cybern; 2019 Dec; 49(12):4206-4218. PubMed ID: 30130246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A switching formation strategy for obstacle avoidance of a multi-robot system based on robot priority model.
    Dai Y; Kim Y; Wee S; Lee D; Lee S
    ISA Trans; 2015 May; 56():123-34. PubMed ID: 25497595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network.
    Han HG; Zhang L; Hou Y; Qiao JF
    IEEE Trans Neural Netw Learn Syst; 2016 Feb; 27(2):402-15. PubMed ID: 26336152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive Formation Control of Electrically Driven Nonholonomic Mobile Robots With Limited Information.
    Bong Seok Park ; Jin Bae Park ; Yoon Ho Choi
    IEEE Trans Syst Man Cybern B Cybern; 2011 Aug; 41(4):1061-75. PubMed ID: 21342853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leader-follower formation control based on non-inertial frames for non-holonomic mobile robots.
    Velasco-Villa M; Rodriguez-Angeles A; Maruri-López IZ; Báez-Hernández JA; Cruz Morales RD
    PLoS One; 2024; 19(1):e0297061. PubMed ID: 38285702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vision-Based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles.
    Zhang L; Ahamed T; Zhang Y; Gao P; Takigawa T
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27110793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal UAV Formation Tracking Control with Dynamic Leading Velocity and Network-Induced Delays.
    Wang Z; Xu M; Liu L; Fang C; Sun Y; Chen H
    Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-Optimal Tracking Control of Mobile Robots Via Receding-Horizon Dual Heuristic Programming.
    Lian C; Xu X; Chen H; He H
    IEEE Trans Cybern; 2016 Nov; 46(11):2484-2496. PubMed ID: 26642462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trifocal Tensor-Based Adaptive Visual Trajectory Tracking Control of Mobile Robots.
    Chen J; Jia B; Zhang K
    IEEE Trans Cybern; 2017 Nov; 47(11):3784-3798. PubMed ID: 27390199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bearing-based localization for leader-follower formation control.
    Han Q; Ren S; Lang H; Zhang C
    PLoS One; 2017; 12(4):e0175378. PubMed ID: 28426706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural-Dynamic-Method-Based Dual-Arm CMG Scheme With Time-Varying Constraints Applied to Humanoid Robots.
    Zhang Z; Li Z; Zhang Y; Luo Y; Li Y
    IEEE Trans Neural Netw Learn Syst; 2015 Dec; 26(12):3251-62. PubMed ID: 26340789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-Optimal Velocity Tracking Control for Consensus Formation of Multiple Nonholonomic Mobile Robots.
    Fahham H; Zaraki A; Tucker G; Spong MW
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34884006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual adaptive dynamic control of mobile robots using neural networks.
    Bugeja MK; Fabri SG; Camilleri L
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):129-41. PubMed ID: 19150763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-learning sliding mode control based on adaptive dynamic programming for nonholonomic mobile robots.
    Ma Q; Zhang X; Xu X; Yang Y; Wu EQ
    ISA Trans; 2023 Nov; 142():136-147. PubMed ID: 37599205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full-state tracking control of a mobile robot using neural networks.
    Chaitanya VS
    Int J Neural Syst; 2005 Oct; 15(5):403-14. PubMed ID: 16278944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.