These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 29993713)

  • 1. 3-D Human Sperm Flagellum Tracing in Low SNR Fluorescence Images.
    Hernandez-Herrera P; Montoya F; Rendon-Mancha JM; Darszon A; Corkidi G
    IEEE Trans Med Imaging; 2018 Oct; 37(10):2236-2247. PubMed ID: 29993713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wave parameters of the sperm flagellum as predictors of human spermatozoa motility.
    Vera O; Muñoz MG; Jaffe K
    Andrologia; 1998; 30(3):153-7. PubMed ID: 9635095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-scale segmentation of neurons based on one-class classification.
    Hernandez-Herrera P; Papadakis M; Kakadiaris IA
    J Neurosci Methods; 2016 Jun; 266():94-106. PubMed ID: 27038663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 3D Tubular Flux Model for Centerline Extraction in Neuron Volumetric Images.
    Wang X; Liu M; Wang Y; Fan J; Meijering E
    IEEE Trans Med Imaging; 2022 May; 41(5):1069-1079. PubMed ID: 34826295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are there intracellular Ca2+ oscillations correlated with flagellar beating in human sperm? A three vs. two-dimensional analysis.
    Corkidi G; Montoya F; Hernández-Herrera P; Ríos-Herrera WA; Müller MF; Treviño CL; Darszon A
    Mol Hum Reprod; 2017 Sep; 23(9):583-593. PubMed ID: 28911211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trajectory Grouping With Curvature Regularization for Tubular Structure Tracking.
    Liu L; Chen D; Shu M; Li B; Shu H; Paques M; Cohen LD
    IEEE Trans Image Process; 2022; 31():405-418. PubMed ID: 34874858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved automatic centerline tracing for dendritic and axonal structures.
    Jiménez D; Labate D; Kakadiaris IA; Papadakis M
    Neuroinformatics; 2015 Apr; 13(2):227-44. PubMed ID: 25433514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flux driven automatic centerline extraction.
    Bouix S; Siddiqi K; Tannenbaum A
    Med Image Anal; 2005 Jun; 9(3):209-21. PubMed ID: 15854842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated tracing of neurites from light microscopy stacks of images.
    Chothani P; Mehta V; Stepanyants A
    Neuroinformatics; 2011 Sep; 9(2-3):263-78. PubMed ID: 21562803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Object-constrained meshless deformable algorithm for high speed 3D nonrigid registration between CT and CBCT.
    Chen T; Kim S; Goyal S; Jabbour S; Zhou J; Rajagopal G; Haffty B; Yue N
    Med Phys; 2010 Jan; 37(1):197-210. PubMed ID: 20175482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-channel multi-scale fully convolutional network for 3D perivascular spaces segmentation in 7T MR images.
    Lian C; Zhang J; Liu M; Zong X; Hung SC; Lin W; Shen D
    Med Image Anal; 2018 May; 46():106-117. PubMed ID: 29518675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated 3-D Neuron Tracing With Precise Branch Erasing and Confidence Controlled Back Tracking.
    Liu S; Zhang D; Song Y; Peng H; Cai W
    IEEE Trans Med Imaging; 2018 Nov; 37(11):2441-2452. PubMed ID: 29993997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint volumetric extraction and enhancement of vasculature from low-SNR 3-D fluorescence microscopy images.
    Almasi S; Ben-Zvi A; Lacoste B; Gu C; Miller EL; Xu X
    Pattern Recognit; 2017 Mar; 63():710-718. PubMed ID: 28566796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing performance of centerline algorithms for quantitative assessment of brain vascular anatomy.
    Diedrich KT; Roberts JA; Schmidt RH; Parker DL
    Anat Rec (Hoboken); 2012 Dec; 295(12):2179-90. PubMed ID: 23060363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint 3-D vessel segmentation and centerline extraction using oblique Hough forests with steerable filters.
    Schneider M; Hirsch S; Weber B; Székely G; Menze BH
    Med Image Anal; 2015 Jan; 19(1):220-49. PubMed ID: 25461339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative analysis of 3-D coronary modeling from two or more projection images.
    Movassaghi B; Rasche V; Grass M; Viergever MA; Niessen WJ
    IEEE Trans Med Imaging; 2004 Dec; 23(12):1517-31. PubMed ID: 15575409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic centerline extraction of cerebrovascular in 4D CTA based on tubular features.
    Zhu C; Wang X; Chen S; Xia M; Huang Y; Pan X
    Phys Med Biol; 2018 Jun; 63(12):125014. PubMed ID: 29787384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rivulet: 3D Neuron Morphology Tracing with Iterative Back-Tracking.
    Liu S; Zhang D; Liu S; Feng D; Peng H; Cai W
    Neuroinformatics; 2016 Oct; 14(4):387-401. PubMed ID: 27184384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction.
    Aylward SR; Bullitt E
    IEEE Trans Med Imaging; 2002 Feb; 21(2):61-75. PubMed ID: 11929106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ordered multi-path propagation for vessel centerline extraction.
    Han T; Ai D; An R; Fan J; Song H; Wang Y; Yang J
    Phys Med Biol; 2021 Jul; 66(15):. PubMed ID: 34157702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.