These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 29993829)

  • 1. Evaluation of a Three Hydrophones Method for 2-Dimensional Cavitation Localization.
    Lafond M; Asquier N; Mestas JL; Carpentier A; Umemura SI; Lafon C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Apr; ():. PubMed ID: 29993829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a Three-Hydrophone Method for 2-D Cavitation Localization.
    Lafond M; Asquier N; Mestas JA; Carpentier A; Umemura SI; Lafon C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jul; 65(7):1093-1101. PubMed ID: 29985133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weighting the Passive Acoustic Mapping Technique With the Phase Coherence Factor for Passive Ultrasound Imaging of Ultrasound-Induced Cavitation.
    Boulos P; Varray F; Poizat A; Ramalli A; Gilles B; Bera JC; Cachard C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2301-2310. PubMed ID: 30273149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive Cavitation Mapping by Cavitation Source Localization From Aperture-Domain Signals-Part II: Phantom and In Vivo Experiments.
    Telichko AV; Lee T; Hyun D; Chowdhury SM; Bachawal S; Herickhoff CD; Paulmurugan R; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1198-1212. PubMed ID: 33141666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive Cavitation Mapping by Cavitation Source Localization From Aperture-Domain Signals-Part I: Theory and Validation Through Simulations.
    Telichko AV; Lee T; Jakovljevic M; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1184-1197. PubMed ID: 33141665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3-D Transcranial Microbubble Cavitation Localization by Four Sensors.
    Hu Z; Xu L; Chien CY; Yang Y; Gong Y; Ye D; Pacia CP; Chen H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Nov; 68(11):3336-3346. PubMed ID: 34166187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive acoustic mapping with absolute time-of-flight information and delay-multiply-sum beamforming.
    Lu S; Su R; Wan C; Guo S; Wan M
    Med Phys; 2023 Apr; 50(4):2323-2335. PubMed ID: 36704970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delay multiply and sum beamforming method applied to enhance linear-array passive acoustic mapping of ultrasound cavitation.
    Lu S; Li R; Yu X; Wang D; Wan M
    Med Phys; 2019 Oct; 46(10):4441-4454. PubMed ID: 31309568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Transcranial Histotripsy Treatment Localization and Mapping Using Acoustic Cavitation Emission Feedback.
    Sukovich JR; Macoskey JJ; Lundt JE; Gerhardson TI; Hall TL; Xu Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jun; 67(6):1178-1191. PubMed ID: 31976885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of the Cross-Spectral Density Matrix for Enhanced Passive Ultrasound Imaging of Cavitation.
    Polichetti M; Varray F; Gilles B; Bera JC; Nicolas B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):910-925. PubMed ID: 33079648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D and 3D real-time passive cavitation imaging of pulsed cavitation ultrasound therapy in moving tissues.
    Suarez Escudero D; Goudot G; Vion M; Tanter M; Pernot M
    Phys Med Biol; 2018 Dec; 63(23):235028. PubMed ID: 30520419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ray-based acoustic localization of cavitation in a highly reverberant environment.
    Chang NA; Dowling DR
    J Acoust Soc Am; 2009 May; 125(5):3088-100. PubMed ID: 19425652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow.
    Ding T; Hu H; Bai C; Guo S; Yang M; Wang S; Wan M
    Ultrasonics; 2016 Jul; 69():166-81. PubMed ID: 27111870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the receiving range of sound field measurements in cavitating media.
    Koch C; Jenderka KV
    Ultrason Sonochem; 2008 Jul; 15(5):846-52. PubMed ID: 18065253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressive spherical beamforming for localization of incipient tip vortex cavitation.
    Choo Y; Seong W
    J Acoust Soc Am; 2016 Dec; 140(6):4085. PubMed ID: 28040045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive Acoustic Mapping Using Data-Adaptive Beamforming Based on Higher Order Statistics.
    Lyka E; Coviello CM; Paverd C; Gray MD; Coussios CC
    IEEE Trans Med Imaging; 2018 Dec; 37(12):2582-2592. PubMed ID: 29994701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring derived acoustic power of an ultrasound surgical device in the linear and nonlinear operating modes.
    Petosić A; Ivancević B; Svilar D
    Ultrasonics; 2009 Jun; 49(6-7):522-31. PubMed ID: 19217636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trans-Stent B-Mode Ultrasound and Passive Cavitation Imaging.
    Haworth KJ; Raymond JL; Radhakrishnan K; Moody MR; Huang SL; Peng T; Shekhar H; Klegerman ME; Kim H; McPherson DD; Holland CK
    Ultrasound Med Biol; 2016 Feb; 42(2):518-27. PubMed ID: 26547633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive spatial mapping of inertial cavitation during HIFU exposure.
    Gyöngy M; Coussios CC
    IEEE Trans Biomed Eng; 2010 Jan; 57(1):48-56. PubMed ID: 19628450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloud cavitation control for lithotripsy using high intensity focused ultrasound.
    Ikeda T; Yoshizawa S; Tosaki M; Allen JS; Takagi S; Ohta N; Kitamura T; Matsumoto Y
    Ultrasound Med Biol; 2006 Sep; 32(9):1383-97. PubMed ID: 16965979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.