These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29993836)

  • 1. Machine Vision System for 3D Plant Phenotyping.
    Chaudhury A; Ward C; Talasaz A; Ivanov AG; Brophy M; Grodzinski B; Huner NPA; Patel RV; Barron JL
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):2009-2022. PubMed ID: 29993836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A photometric stereo-based 3D imaging system using computer vision and deep learning for tracking plant growth.
    Bernotas G; Scorza LCT; Hansen MF; Hales IJ; Halliday KJ; Smith LN; Smith ML; McCormick AJ
    Gigascience; 2019 May; 8(5):. PubMed ID: 31127811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. phenoSeeder - A Robot System for Automated Handling and Phenotyping of Individual Seeds.
    Jahnke S; Roussel J; Hombach T; Kochs J; Fischbach A; Huber G; Scharr H
    Plant Physiol; 2016 Nov; 172(3):1358-1370. PubMed ID: 27663410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active Vision and Surface Reconstruction for 3D Plant Shoot Modelling.
    Gibbs JA; Pound MP; French AP; Wells DM; Murchie EH; Pridmore TP
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):1907-1917. PubMed ID: 31027044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotiki: an open software and hardware platform for affordable and easy image-based phenotyping of rosette-shaped plants.
    Minervini M; Giuffrida MV; Perata P; Tsaftaris SA
    Plant J; 2017 Apr; 90(1):204-216. PubMed ID: 28066963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pheno4D: A spatio-temporal dataset of maize and tomato plant point clouds for phenotyping and advanced plant analysis.
    Schunck D; Magistri F; Rosu RA; Cornelißen A; Chebrolu N; Paulus S; Léon J; Behnke S; Stachniss C; Kuhlmann H; Klingbeil L
    PLoS One; 2021; 16(8):e0256340. PubMed ID: 34407122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Registration of spatio-temporal point clouds of plants for phenotyping.
    Chebrolu N; Magistri F; Läbe T; Stachniss C
    PLoS One; 2021; 16(2):e0247243. PubMed ID: 33630896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated interpretation of 3D laserscanned point clouds for plant organ segmentation.
    Wahabzada M; Paulus S; Kersting K; Mahlein AK
    BMC Bioinformatics; 2015 Aug; 16():248. PubMed ID: 26253564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping.
    Paulus S; Dupuis J; Mahlein AK; Kuhlmann H
    BMC Bioinformatics; 2013 Jul; 14():238. PubMed ID: 23890277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative monitoring of Arabidopsis thaliana growth and development using high-throughput plant phenotyping.
    Arend D; Lange M; Pape JM; Weigelt-Fischer K; Arana-Ceballos F; Mücke I; Klukas C; Altmann T; Scholz U; Junker A
    Sci Data; 2016 Aug; 3():160055. PubMed ID: 27529152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vision Based Modeling of Plants Phenotyping in Vertical Farming under Artificial Lighting.
    Franchetti B; Ntouskos V; Giuliani P; Herman T; Barnes L; Pirri F
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31658728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant 3D (P3D): a plant phenotyping toolkit for 3D point clouds.
    Ziamtsov I; Navlakha S
    Bioinformatics; 2020 Jun; 36(12):3949-3950. PubMed ID: 32232439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structured Light-Based 3D Reconstruction System for Plants.
    Nguyen TT; Slaughter DC; Max N; Maloof JN; Sinha N
    Sensors (Basel); 2015 Jul; 15(8):18587-612. PubMed ID: 26230701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated analysis of barley organs using 3D laser scanning: an approach for high throughput phenotyping.
    Paulus S; Dupuis J; Riedel S; Kuhlmann H
    Sensors (Basel); 2014 Jul; 14(7):12670-86. PubMed ID: 25029283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Approaches to Improve Three Basic Plant Phenotyping Tasks Using Three-Dimensional Point Clouds.
    Ziamtsov I; Navlakha S
    Plant Physiol; 2019 Dec; 181(4):1425-1440. PubMed ID: 31591152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging Image Analysis to Compute 3D Plant Phenotypes Based on Voxel-Grid Plant Reconstruction.
    Das Choudhury S; Maturu S; Samal A; Stoerger V; Awada T
    Front Plant Sci; 2020; 11():521431. PubMed ID: 33362806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel mesh processing based technique for 3D plant analysis.
    Paproki A; Sirault X; Berry S; Furbank R; Fripp J
    BMC Plant Biol; 2012 May; 12():63. PubMed ID: 22553969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Cost Three-Dimensional Modeling of Crop Plants.
    Martinez-Guanter J; Ribeiro Á; Peteinatos GG; Pérez-Ruiz M; Gerhards R; Bengochea-Guevara JM; Machleb J; Andújar D
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent developments and potential of robotics in plant eco-phenotyping.
    Yao L; van de Zedde R; Kowalchuk G
    Emerg Top Life Sci; 2021 May; 5(2):289-300. PubMed ID: 34013965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.
    Lee U; Chang S; Putra GA; Kim H; Kim DH
    PLoS One; 2018; 13(4):e0196615. PubMed ID: 29702690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.