These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29993836)

  • 21. Recent developments and potential of robotics in plant eco-phenotyping.
    Yao L; van de Zedde R; Kowalchuk G
    Emerg Top Life Sci; 2021 May; 5(2):289-300. PubMed ID: 34013965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Novel LiDAR-Based Instrument for High-Throughput, 3D Measurement of Morphological Traits in Maize and Sorghum.
    Thapa S; Zhu F; Walia H; Yu H; Ge Y
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29652788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A High-Throughput, Field-Based Phenotyping Technology for Tall Biomass Crops.
    Salas Fernandez MG; Bao Y; Tang L; Schnable PS
    Plant Physiol; 2017 Aug; 174(4):2008-2022. PubMed ID: 28620124
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative 3D Analysis of Plant Roots Growing in Soil Using Magnetic Resonance Imaging.
    van Dusschoten D; Metzner R; Kochs J; Postma JA; Pflugfelder D; Bühler J; Schurr U; Jahnke S
    Plant Physiol; 2016 Mar; 170(3):1176-88. PubMed ID: 26729797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards Automated Large-Scale 3D Phenotyping of Vineyards under Field Conditions.
    Rose JC; Kicherer A; Wieland M; Klingbeil L; Töpfer R; Kuhlmann H
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plant Phenotyping Research Trends, a Science Mapping Approach.
    Costa C; Schurr U; Loreto F; Menesatti P; Carpentier S
    Front Plant Sci; 2018; 9():1933. PubMed ID: 30666264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-throughput 3D modelling to dissect the genetic control of leaf elongation in barley (Hordeum vulgare).
    Ward B; Brien C; Oakey H; Pearson A; Negrão S; Schilling RK; Taylor J; Jarvis D; Timmins A; Roy SJ; Tester M; Berger B; van den Hengel A
    Plant J; 2019 May; 98(3):555-570. PubMed ID: 30604470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant Phenotyping: An Active Vision Cell for Three-Dimensional Plant Shoot Reconstruction.
    Gibbs JA; Pound M; French AP; Wells DM; Murchie E; Pridmore T
    Plant Physiol; 2018 Oct; 178(2):524-534. PubMed ID: 30097468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HTPheno: an image analysis pipeline for high-throughput plant phenotyping.
    Hartmann A; Czauderna T; Hoffmann R; Stein N; Schreiber F
    BMC Bioinformatics; 2011 May; 12():148. PubMed ID: 21569390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D Reconstruction of Non-Rigid Plants and Sensor Data Fusion for Agriculture Phenotyping.
    Sampaio GS; Silva LA; Marengoni M
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203831
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
    Guo Q; Wu F; Pang S; Zhao X; Chen L; Liu J; Xue B; Xu G; Li L; Jing H; Chu C
    Sci China Life Sci; 2018 Mar; 61(3):328-339. PubMed ID: 28616808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-Destructive Measurement of Three-Dimensional Plants Based on Point Cloud.
    Wang Y; Chen Y
    Plants (Basel); 2020 Apr; 9(5):. PubMed ID: 32365673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Field-Based High-Throughput Phenotyping for Maize Plant Using 3D LiDAR Point Cloud Generated With a "Phenomobile".
    Qiu Q; Sun N; Bai H; Wang N; Fan Z; Wang Y; Meng Z; Li B; Cong Y
    Front Plant Sci; 2019; 10():554. PubMed ID: 31134110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations.
    Hui F; Zhu J; Hu P; Meng L; Zhu B; Guo Y; Li B; Ma Y
    Ann Bot; 2018 Apr; 121(5):1079-1088. PubMed ID: 29509841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extra- and intracellular distribution of cytokinins in the leaves of monocots and dicots.
    Jiskrová E; Novák O; Pospíšilová H; Holubová K; Karády M; Galuszka P; Robert S; Frébort I
    N Biotechnol; 2016 Sep; 33(5 Pt B):735-742. PubMed ID: 26777983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An explainable deep machine vision framework for plant stress phenotyping.
    Ghosal S; Blystone D; Singh AK; Ganapathysubramanian B; Singh A; Sarkar S
    Proc Natl Acad Sci U S A; 2018 May; 115(18):4613-4618. PubMed ID: 29666265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remodeling of the major light-harvesting antenna protein of PSII protects the young leaves of barley (Hordeum vulgare L.) from photoinhibition under prolonged iron deficiency.
    Saito A; Iino T; Sonoike K; Miwa E; Higuchi K
    Plant Cell Physiol; 2010 Dec; 51(12):2013-30. PubMed ID: 20980268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Open source 3D phenotyping of chickpea plant architecture across plant development.
    Salter WT; Shrestha A; Barbour MM
    Plant Methods; 2021 Sep; 17(1):95. PubMed ID: 34530876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantifying Variation in Soybean Due to Flood Using a Low-Cost 3D Imaging System.
    Cao W; Zhou J; Yuan Y; Ye H; Nguyen HT; Chen J; Zhou J
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31200576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional approach to high-throughput plant growth analysis.
    Tessmer OL; Jiao Y; Cruz JA; Kramer DM; Chen J
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S17. PubMed ID: 24565437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.