BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 29993890)

  • 1. Identifying Candidate Genetic Associations with MRI-Derived AD-Related ROI via Tree-Guided Sparse Learning.
    Hao X; Yao X; Risacher SL; Saykin AJ; Yu J; Wang H; Tan L; Shen L; Zhang D
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1986-1996. PubMed ID: 29993890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying genetic associations with MRI-derived measures via tree-guided sparse learning.
    Hao X; Yu J; Zhang D
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):757-64. PubMed ID: 25485448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying Multimodal Intermediate Phenotypes Between Genetic Risk Factors and Disease Status in Alzheimer's Disease.
    Hao X; Yao X; Yan J; Risacher SL; Saykin AJ; Zhang D; Shen L;
    Neuroinformatics; 2016 Oct; 14(4):439-52. PubMed ID: 27277494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-task SCCA method for brain imaging genetics and its application in neurodegenerative diseases.
    Zhang X; Hao Y; Zhang J; Ji Y; Zou S; Zhao S; Xie S; Du L
    Comput Methods Programs Biomed; 2023 Apr; 232():107450. PubMed ID: 36905750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer's Disease.
    Hao X; Li C; Du L; Yao X; Yan J; Risacher SL; Saykin AJ; Shen L; Zhang D;
    Sci Rep; 2017 Mar; 7():44272. PubMed ID: 28291242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DIAGNOSIS-GUIDED METHOD FOR IDENTIFYING MULTI-MODALITY NEUROIMAGING BIOMARKERS ASSOCIATED WITH GENETIC RISK FACTORS IN ALZHEIMER'S DISEASE.
    Hao X; Yan J; Yao X; Risacher SL; Saykin AJ; Zhang D; Shen L;
    Pac Symp Biocomput; 2016; 21():108-19. PubMed ID: 26776178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort.
    Wang H; Nie F; Huang H; Kim S; Nho K; Risacher SL; Saykin AJ; Shen L;
    Bioinformatics; 2012 Jan; 28(2):229-37. PubMed ID: 22155867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome-guided amyloid imaging genetic analysis via a novel structured sparse learning algorithm.
    Yan J; Du L; Kim S; Risacher SL; Huang H; Moore JH; Saykin AJ; Shen L;
    Bioinformatics; 2014 Sep; 30(17):i564-71. PubMed ID: 25161248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-Wide Genome-Wide Association Study for Alzheimer's Disease via Joint Projection Learning and Sparse Regression Model.
    Zhou T; Thung KH; Liu M; Shen D
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):165-175. PubMed ID: 29993426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genotype-phenotype association study via new multi-task learning model.
    Huo Z; Shen D; Huang H
    Pac Symp Biocomput; 2018; 23():353-364. PubMed ID: 29218896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting genetic associations with brain imaging phenotypes in Alzheimer's disease via a novel structured KCCA approach.
    Wang L; Kong W; Wang S
    J Bioinform Comput Biol; 2021 Aug; 19(4):2150012. PubMed ID: 33950804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Region-of-Interest based sparse feature learning method for Alzheimer's disease identification.
    Wang L; Liu Y; Zeng X; Cheng H; Wang Z; Wang Q
    Comput Methods Programs Biomed; 2020 Apr; 187():105290. PubMed ID: 31927305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive testing for multiple traits in a proportional odds model with applications to detect SNP-brain network associations.
    Kim J; Pan W;
    Genet Epidemiol; 2017 Apr; 41(3):259-277. PubMed ID: 28191669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structured Genome-Wide Association Studies with Bayesian Hierarchical Variable Selection.
    Zhao Y; Zhu H; Lu Z; Knickmeyer RC; Zou F
    Genetics; 2019 Jun; 212(2):397-415. PubMed ID: 31010934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging Genetics Study Based on a Temporal Group Sparse Regression and Additive Model for Biomarker Detection of Alzheimer's Disease.
    Huang M; Chen X; Yu Y; Lai H; Feng Q
    IEEE Trans Med Imaging; 2021 May; 40(5):1461-1473. PubMed ID: 33556003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes.
    Wang Y; Goh W; Wong L; Montana G;
    BMC Bioinformatics; 2013; 14 Suppl 16(Suppl 16):S6. PubMed ID: 24564704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Group Guided Fused Laplacian Sparse Group Lasso for Modeling Alzheimer's Disease Progression.
    Liu X; Wang J; Ren F; Kong J
    Comput Math Methods Med; 2020; 2020():4036560. PubMed ID: 32104201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer's disease.
    Potkin SG; Guffanti G; Lakatos A; Turner JA; Kruggel F; Fallon JH; Saykin AJ; Orro A; Lupoli S; Salvi E; Weiner M; Macciardi F;
    PLoS One; 2009 Aug; 4(8):e6501. PubMed ID: 19668339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fused Group Lasso Regularized Multi-Task Feature Learning and Its Application to the Cognitive Performance Prediction of Alzheimer's Disease.
    Liu X; Cao P; Wang J; Kong J; Zhao D
    Neuroinformatics; 2019 Apr; 17(2):271-294. PubMed ID: 30284672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal Genotype-Phenotype Association Study through Temporal Structure Auto-Learning Predictive Model.
    Wang X; Yan J; Yao X; Kim S; Nho K; Risacher SL; Saykin AJ; Shen L; Huang H
    J Comput Biol; 2018 Jul; 25(7):809-824. PubMed ID: 30011249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.