These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29993965)

  • 1. DroidFusion: A Novel Multilevel Classifier Fusion Approach for Android Malware Detection.
    Yerima SY; Sezer S
    IEEE Trans Cybern; 2019 Feb; 49(2):453-466. PubMed ID: 29993965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A detection method for android application security based on TF-IDF and machine learning.
    Yuan H; Tang Y; Sun W; Liu L
    PLoS One; 2020; 15(9):e0238694. PubMed ID: 32915836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MFDroid: A Stacking Ensemble Learning Framework for Android Malware Detection.
    Wang X; Zhang L; Zhao K; Ding X; Yu M
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Intelligence Algorithms for Malware Detection in Android-Operated Mobile Devices.
    Alkahtani H; Aldhyani THH
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Multi-Classification Dynamic Detection Model for Android Malware Based on Improved Zebra Optimization Algorithm and LightGBM.
    Zhou S; Li H; Fu X; Han D; He X
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OpCode-Level Function Call Graph Based Android Malware Classification Using Deep Learning.
    Niu W; Cao R; Zhang X; Ding K; Zhang K; Li T
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32610606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A static analysis approach for Android permission-based malware detection systems.
    Mohamad Arif J; Ab Razak MF; Awang S; Tuan Mat SR; Ismail NSN; Firdaus A
    PLoS One; 2021; 16(9):e0257968. PubMed ID: 34591930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Android Malware in the Internet of Things through the K-Nearest Neighbor Algorithm.
    Babbar H; Rani S; Sah DK; AlQahtani SA; Kashif Bashir A
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FedHGCDroid: An Adaptive Multi-Dimensional Federated Learning for Privacy-Preserving Android Malware Classification.
    Jiang C; Yin K; Xia C; Huang W
    Entropy (Basel); 2022 Jul; 24(7):. PubMed ID: 35885142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PermDroid a framework developed using proposed feature selection approach and machine learning techniques for Android malware detection.
    Mahindru A; Arora H; Kumar A; Gupta SK; Mahajan S; Kadry S; Kim J
    Sci Rep; 2024 May; 14(1):10724. PubMed ID: 38730228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adversarial Samples on Android Malware Detection Systems for IoT Systems.
    Liu X; Du X; Zhang X; Zhu Q; Wang H; Guizani M
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30823597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convolution neural network with batch normalization and inception-residual modules for Android malware classification.
    Liu T; Zhang H; Long H; Shi J; Yao Y
    Sci Rep; 2022 Aug; 12(1):13996. PubMed ID: 35978023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Randomized Prediction Games for Adversarial Machine Learning.
    Rota Bulo S; Biggio B; Pillai I; Pelillo M; Roli F
    IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2466-2478. PubMed ID: 27514067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Android malware detection method based on highly distinguishable static features and DenseNet.
    Yang J; Zhang Z; Zhang H; Fan J
    PLoS One; 2022; 17(11):e0276332. PubMed ID: 36417464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feature Subset Selection for Malware Detection in Smart IoT Platforms.
    Abawajy J; Darem A; Alhashmi AA
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Android malware analysis in a nutshell.
    Almomani I; Ahmed M; El-Shafai W
    PLoS One; 2022; 17(7):e0270647. PubMed ID: 35788205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Machine Learning Algorithms for Malware Detection.
    Akhtar MS; Feng T
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explainable Artificial Intelligence-Based IoT Device Malware Detection Mechanism Using Image Visualization and Fine-Tuned CNN-Based Transfer Learning Model.
    Naeem H; Alshammari BM; Ullah F
    Comput Intell Neurosci; 2022; 2022():7671967. PubMed ID: 35875737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A malware detection system using a hybrid approach of multi-heads attention-based control flow traces and image visualization.
    Ullah F; Srivastava G; Ullah S
    J Cloud Comput (Heidelb); 2022; 11(1):75. PubMed ID: 36345308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Informative and Comprehensive Behavioral Characteristics Analysis Methodology of Android Application for Data Security in Brain-Machine Interfacing.
    Su X; Gong Q; Zheng Y; Liu X; Li KC
    Comput Math Methods Med; 2020; 2020():3658795. PubMed ID: 32300372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.