BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29993986)

  • 1. Predicting FAD Interacting Residues with Feature Selection and Comprehensive Sequence Descriptors.
    Yang R; Zhang C; Gao R; Zhang L; Song Q
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):2046-2056. PubMed ID: 29993986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of FAD interacting residues in a protein from its primary sequence using evolutionary information.
    Mishra NK; Raghava GP
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S48. PubMed ID: 20122222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of FAD binding sites in electron transport proteins according to efficient radial basis function networks and significant amino acid pairs.
    Le NQ; Ou YY
    BMC Bioinformatics; 2016 Jul; 17():298. PubMed ID: 27475771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Feature Extraction Method with Feature Selection to Identify Golgi-Resident Protein Types from Imbalanced Data.
    Yang R; Zhang C; Gao R; Zhang L
    Int J Mol Sci; 2016 Feb; 17(2):218. PubMed ID: 26861308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-Based Prediction of RNA-Binding Proteins Using Random Forest with Minimum Redundancy Maximum Relevance Feature Selection.
    Ma X; Guo J; Sun X
    Biomed Res Int; 2015; 2015():425810. PubMed ID: 26543860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues.
    Ma X; Guo J; Sun X
    PLoS One; 2016; 11(12):e0167345. PubMed ID: 27907159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of adenine in fast excited-state deactivation of FAD: a femtosecond mid-IR transient absorption study.
    Li G; Glusac KD
    J Phys Chem B; 2009 Jul; 113(27):9059-61. PubMed ID: 19527046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based classification of FAD binding sites: A comparative study of structural alignment tools.
    Garma LD; Medina M; Juffer AH
    Proteins; 2016 Nov; 84(11):1728-1747. PubMed ID: 27580869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Succinylation Site Prediction Based on Protein Sequences Using the IFS-LightGBM (BO) Model.
    Zhang L; Liu M; Qin X; Liu G
    Comput Math Methods Med; 2020; 2020():8858489. PubMed ID: 33224267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs.
    Mewies M; McIntire WS; Scrutton NS
    Protein Sci; 1998 Jan; 7(1):7-20. PubMed ID: 9514256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochromatographic retention studies on a flavin-binding RNA aptamer sorbent.
    Clark SL; Remcho VT
    Anal Chem; 2003 Nov; 75(21):5692-6. PubMed ID: 14588007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting flavin and nicotinamide adenine dinucleotide-binding sites in proteins using the fragment transformation method.
    Lu CH; Yu CS; Lin YF; Chen JY
    Biomed Res Int; 2015; 2015():402536. PubMed ID: 26000290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The flavoprotein component of the Escherichia coli sulfite reductase: expression, purification, and spectral and catalytic properties of a monomeric form containing both the flavin adenine dinucleotide and the flavin mononucleotide cofactors.
    Zeghouf M; Fontecave M; Macherel D; Covès J
    Biochemistry; 1998 Apr; 37(17):6114-23. PubMed ID: 9558350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting protein-binding RNA nucleotides with consideration of binding partners.
    Tuvshinjargal N; Lee W; Park B; Han K
    Comput Methods Programs Biomed; 2015 Jun; 120(1):3-15. PubMed ID: 25907142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting DNA-binding sites of proteins from amino acid sequence.
    Yan C; Terribilini M; Wu F; Jernigan RL; Dobbs D; Honavar V
    BMC Bioinformatics; 2006 May; 7():262. PubMed ID: 16712732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urea induced unfolding dynamics of flavin adenine dinucleotide (FAD): spectroscopic and molecular dynamics simulation studies from femto-second to nanosecond regime.
    Sengupta A; Singh RK; Gavvala K; Koninti RK; Mukherjee A; Hazra P
    J Phys Chem B; 2014 Feb; 118(7):1881-90. PubMed ID: 24456234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of RNA binding sites in proteins from amino acid sequence.
    Terribilini M; Lee JH; Yan C; Jernigan RL; Honavar V; Dobbs D
    RNA; 2006 Aug; 12(8):1450-62. PubMed ID: 16790841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavin-sensitized photoreduction of thymidine glycol.
    Ito T; Kondo A; Terada S; Nishimoto S
    Bioorg Med Chem Lett; 2007 Nov; 17(22):6129-33. PubMed ID: 17897825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate prediction of RNA-binding protein residues with two discriminative structural descriptors.
    Sun M; Wang X; Zou C; He Z; Liu W; Li H
    BMC Bioinformatics; 2016 Jun; 17(1):231. PubMed ID: 27266516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and application of isotopically labeled flavin nucleotides.
    Mishanina TV; Kohen A
    J Labelled Comp Radiopharm; 2015 Jul; 58(9):370-5. PubMed ID: 26149960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.