These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29993987)

  • 1. A 36 μW 1.1 mm2 Reconfigurable Analog Front-End for Cardiovascular and Respiratory Signals Recording.
    Xu J; Konijnenburg M; Ha H; van Wegberg R; Song S; Blanco-Almazan D; Van Hoof C; Van Helleputte N
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):774-783. PubMed ID: 29993987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosignal integrated circuit with simultaneous acquisition of ECG and PPG for wearable healthcare applications.
    Kim H; Park Y; Ko Y; Mun Y; Lee S; Ko H
    Technol Health Care; 2018; 26(1):3-9. PubMed ID: 29060948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 4-μW Analog Front End Achieving 2.4 NEF for Long-Term ECG Monitoring.
    Yang W; Jiang H; Yin Y; Wang Z
    IEEE Trans Biomed Circuits Syst; 2021 Aug; 15(4):655-665. PubMed ID: 34043513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a Low-Power Ground-Free Analog Front End for ECG Acquisition.
    Watcharapongvinit K; Yongpanich I; Wattanapanitch W
    IEEE Trans Biomed Circuits Syst; 2023 Apr; 17(2):299-311. PubMed ID: 37027597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconfigurable Multiparameter Biosignal Acquisition SoC for Low Power Wearable Platform.
    Kim J; Ko H
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27898004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A LFP/AP Mode Reconfigurable Analog Front-End Combining an Electrical EEEG-iEEG Model for the Closed-Loop VNS.
    Li X; Ren S; Li X; Zhao T; Deng X; Zheng W
    IEEE Trans Biomed Circuits Syst; 2024 Apr; 18(2):408-422. PubMed ID: 37971906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully Integrated Biopotential Acquisition Analog Front-End IC.
    Song H; Park Y; Kim H; Ko H
    Sensors (Basel); 2015 Sep; 15(10):25139-56. PubMed ID: 26437404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analog front-end measuring biopotential signal with effective offset rejection loop.
    Lim S; Kim H; Song H; Cho DI; Ko H
    Biomed Mater Eng; 2015; 26 Suppl 1():S935-41. PubMed ID: 26406095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 2.55 NEF 76 dB CMRR DC-Coupled Fully Differential Difference Amplifier Based Analog Front End for Wearable Biomedical Sensors.
    Zhao Y; Shang Z; Lian Y
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):918-926. PubMed ID: 31247560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-mode CMOS analog front-end (AFE) for electrical impedance spectroscopy (EIS) systems.
    Valente V; Dai Jiang ; Demosthenous A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1914-1917. PubMed ID: 28268701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Low-Power Current-Reuse Analog Front-End for High-Density Neural Recording Implants.
    Rezaei M; Maghsoudloo E; Bories C; De Koninck Y; Gosselin B
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):271-280. PubMed ID: 29570055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Dynamically Reconfigurable ECG Analog Front-End With a 2.5× Data-Dependent Power Reduction.
    Mondal S; Hsu CL; Jafari R; Hall D
    IEEE Trans Biomed Circuits Syst; 2021 Oct; 15(5):1066-1078. PubMed ID: 34550891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards a Self-Powered ECG and PPG Sensing Wearable Device.
    Zhao L; Jia Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6791-6794. PubMed ID: 34892667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The design of CMOS general-purpose analog front-end circuit with tunable gain and bandwidth for biopotential signal recording systems.
    Chen WM; Yang WC; Tsai TY; Chiueh H; Wu CY
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4784-7. PubMed ID: 22255408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 2.3-5.7 μW Tri-Modal Self-Adaptive Photoplethysmography Sensor Interface IC for Heart Rate, SpO
    Wang P; Agarwala R; Ownby NB; Liu X; Calhoun BH
    IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):564-579. PubMed ID: 38289849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 280 μW, 108 dB DR PPG-Readout IC With Reconfigurable, 2nd-Order, Incremental ΔΣM Front-End for Direct Light-to-Digital Conversion.
    Marefat F; Erfani R; Kilgore KL; Mohseni P
    IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1183-1194. PubMed ID: 33186120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of CMOS Analog Front-End Local-Field Potential Chopper Amplifier With Stimulation Artifact Tolerance for Real-Time Closed-Loop Deep Brain Stimulation SoC Applications.
    Wu CY; Huang CW; Chen YW; Lai CK; Hung CC; Ker MD
    IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):539-551. PubMed ID: 38198255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Multimodal Neural-Recording IC With Reconfigurable Analog Front-Ends for Improved Availability and Usability for Recording Channels.
    Lee T; Kim MK; Lee HJ; Je M
    IEEE Trans Biomed Circuits Syst; 2022 Apr; 16(2):185-199. PubMed ID: 35085092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reconfigurable medically cohesive biomedical front-end with ΣΔ ADC in 0.18µm CMOS.
    Jha P; Patra P; Naik J; Acharya A; Rajalakshmi P; Singh SG; Dutta A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():833-6. PubMed ID: 26736391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconfigurable Sensor Analog Front-End Using Low-Noise Chopper-Stabilized Delta-Sigma Capacitance-to-Digital Converter.
    Kim H; Lee B; Mun Y; Kim J; Han K; Roh Y; Song D; Huh S; Ko H
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.