BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 29993996)

  • 1. Pulmonary Artery-Vein Classification in CT Images Using Deep Learning.
    Nardelli P; Jimenez-Carretero D; Bermejo-Pelaez D; Washko GR; Rahaghi FN; Ledesma-Carbayo MJ; San Jose Estepar R
    IEEE Trans Med Imaging; 2018 Nov; 37(11):2428-2440. PubMed ID: 29993996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A graph-cut approach for pulmonary artery-vein segmentation in noncontrast CT images.
    Jimenez-Carretero D; Bermejo-Peláez D; Nardelli P; Fraga P; Fraile E; San José Estépar R; Ledesma-Carbayo MJ
    Med Image Anal; 2019 Feb; 52():144-159. PubMed ID: 30579223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic Pulmonary Artery-Vein Separation and Classification in Computed Tomography Using Tree Partitioning and Peripheral Vessel Matching.
    Charbonnier JP; Brink M; Ciompi F; Scholten ET; Schaefer-Prokop CM; van Rikxoort EM
    IEEE Trans Med Imaging; 2016 Mar; 35(3):882-92. PubMed ID: 26584489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmentation and suppression of pulmonary vessels in low-dose chest CT scans.
    Gu X; Wang J; Zhao J; Li Q
    Med Phys; 2019 Aug; 46(8):3603-3614. PubMed ID: 31240721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic reconstruction of the arterial and venous trees on volumetric chest CT.
    Park S; Lee SM; Kim N; Seo JB; Shin H
    Med Phys; 2013 Jul; 40(7):071906. PubMed ID: 23822443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset.
    Xu M; Qi S; Yue Y; Teng Y; Xu L; Yao Y; Qian W
    Biomed Eng Online; 2019 Jan; 18(1):2. PubMed ID: 30602393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification.
    Sun Y; Xue B; Zhang M; Yen GG; Lv J
    IEEE Trans Cybern; 2020 Sep; 50(9):3840-3854. PubMed ID: 32324588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks.
    Ibragimov B; Xing L
    Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated integer programming based separation of arteries and veins from thoracic CT images.
    Payer C; Pienn M; Bálint Z; Shekhovtsov A; Talakic E; Nagy E; Olschewski A; Olschewski H; Urschler M
    Med Image Anal; 2016 Dec; 34():109-122. PubMed ID: 27189777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.
    Xu X; Zhou F; Liu B
    Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):967-975. PubMed ID: 29556905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.
    Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH
    Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier.
    Wolterink JM; van Hamersvelt RW; Viergever MA; Leiner T; Išgum I
    Med Image Anal; 2019 Jan; 51():46-60. PubMed ID: 30388501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature-shared adaptive-boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images.
    Wang J; Chen X; Lu H; Zhang L; Pan J; Bao Y; Su J; Qian D
    Med Phys; 2020 Apr; 47(4):1738-1749. PubMed ID: 32020649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches.
    Zhou X
    Adv Exp Med Biol; 2020; 1213():135-147. PubMed ID: 32030668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aorta and main pulmonary artery segmentation using stacked U-Net and localization on non-contrast-enhanced computed tomography images.
    Suzuki H; Kawata Y; Aokage K; Matsumoto Y; Sugiura T; Tanabe N; Nakano Y; Tsuchida T; Kusumoto M; Marumo K; Kaneko M; Niki N
    Med Phys; 2024 Feb; 51(2):1232-1243. PubMed ID: 37519027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DCT-MIL: Deep CNN transferred multiple instance learning for COPD identification using CT images.
    Xu C; Qi S; Feng J; Xia S; Kang Y; Yao Y; Qian W
    Phys Med Biol; 2020 Jul; 65(14):145011. PubMed ID: 32235077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new paradigm of interactive artery/vein separation in noncontrast pulmonary CT imaging using multiscale topomorphologic opening.
    Gao Z; Grout RW; Holtze C; Hoffman EA; Saha PK
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3016-27. PubMed ID: 22899571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint segmentation and classification of retinal arteries/veins from fundus images.
    Girard F; Kavalec C; Cheriet F
    Artif Intell Med; 2019 Mar; 94():96-109. PubMed ID: 30871687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scale-space approximated convolutional neural networks for retinal vessel segmentation.
    Noh KJ; Park SJ; Lee S
    Comput Methods Programs Biomed; 2019 Sep; 178():237-246. PubMed ID: 31416552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CNN-Based Projected Gradient Descent for Consistent CT Image Reconstruction.
    Gupta H; Jin KH; Nguyen HQ; McCann MT; Unser M
    IEEE Trans Med Imaging; 2018 Jun; 37(6):1440-1453. PubMed ID: 29870372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.