BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 29993996)

  • 21. Determination of lung segments in computed tomography images using the Euclidean distance to the pulmonary artery.
    Stoecker C; Welter S; Moltz JH; Lassen B; Kuhnigk JM; Krass S; Peitgen HO
    Med Phys; 2013 Sep; 40(9):091912. PubMed ID: 24007163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic Organ Segmentation for CT Scans Based on Super-Pixel and Convolutional Neural Networks.
    Liu X; Guo S; Yang B; Ma S; Zhang H; Li J; Sun C; Jin L; Li X; Yang Q; Fu Y
    J Digit Imaging; 2018 Oct; 31(5):748-760. PubMed ID: 29679242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transfer learning for classification of cardiovascular tissues in histological images.
    Mazo C; Bernal J; Trujillo M; Alegre E
    Comput Methods Programs Biomed; 2018 Oct; 165():69-76. PubMed ID: 30337082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Classification of CT brain images based on deep learning networks.
    Gao XW; Hui R; Tian Z
    Comput Methods Programs Biomed; 2017 Jan; 138():49-56. PubMed ID: 27886714
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic segmentation of rotational x-ray images for anatomic intra-procedural surface generation in atrial fibrillation ablation procedures.
    Manzke R; Meyer C; Ecabert O; Peters J; Noordhoek NJ; Thiagalingam A; Reddy VY; Chan RC; Weese J
    IEEE Trans Med Imaging; 2010 Feb; 29(2):260-72. PubMed ID: 20129843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal artifact reduction on cervical CT images by deep residual learning.
    Huang X; Wang J; Tang F; Zhong T; Zhang Y
    Biomed Eng Online; 2018 Nov; 17(1):175. PubMed ID: 30482231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic pulmonary artery-vein separation in CT images using a twin-pipe network and topology reconstruction.
    Pan L; Yan X; Zheng Y; Huang L; Zhang Z; Fu R; Zheng B; Zheng S
    PeerJ Comput Sci; 2023; 9():e1537. PubMed ID: 37810355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques.
    Zhu J; Zhang J; Qiu B; Liu Y; Liu X; Chen L
    Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computed tomography super-resolution using deep convolutional neural network.
    Park J; Hwang D; Kim KY; Kang SK; Kim YK; Lee JS
    Phys Med Biol; 2018 Jul; 63(14):145011. PubMed ID: 29923839
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Classification of Computed Tomography Images in Different Slice Positions Using Deep Learning.
    Sugimori H
    J Healthc Eng; 2018; 2018():1753480. PubMed ID: 30123439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Validation of the Gatortail method for accurate sizing of pulmonary vessels from 3D medical images.
    O'Dell WG; Gormaley AK; Prida DA
    Med Phys; 2017 Dec; 44(12):6314-6328. PubMed ID: 28905390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of Multidrug-Resistant TB from CT Pulmonary Images Based on Deep Learning Techniques.
    Gao XW; Qian Y
    Mol Pharm; 2018 Oct; 15(10):4326-4335. PubMed ID: 29257894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D Convolutional Neural Network for Automatic Detection of Lung Nodules in Chest CT.
    Hamidian S; Sahiner B; Petrick N; Pezeshk A
    Proc SPIE Int Soc Opt Eng; 2017; 10134():. PubMed ID: 28845077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CT image segmentation of bone for medical additive manufacturing using a convolutional neural network.
    Minnema J; van Eijnatten M; Kouw W; Diblen F; Mendrik A; Wolff J
    Comput Biol Med; 2018 Dec; 103():130-139. PubMed ID: 30366309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving the Accuracy of Simultaneously Reconstructed Activity and Attenuation Maps Using Deep Learning.
    Hwang D; Kim KY; Kang SK; Seo S; Paeng JC; Lee DS; Lee JS
    J Nucl Med; 2018 Oct; 59(10):1624-1629. PubMed ID: 29449446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.
    Kang E; Min J; Ye JC
    Med Phys; 2017 Oct; 44(10):e360-e375. PubMed ID: 29027238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic segmentation of intracranial arteries and veins in four-dimensional cerebral CT perfusion scans.
    Mendrik A; Vonken EJ; van Ginneken B; Smit E; Waaije A; Bertolini G; Viergever MA; Prokop M
    Med Phys; 2010 Jun; 37(6):2956-66. PubMed ID: 20632608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fully Automatic Myocardial Segmentation of Contrast Echocardiography Sequence Using Random Forests Guided by Shape Model.
    Li Y; Ho CP; Toulemonde M; Chahal N; Senior R; Tang MX
    IEEE Trans Med Imaging; 2018 May; 37(5):1081-1091. PubMed ID: 28961106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automatic coronary calcium scoring using noncontrast and contrast CT images.
    Yang G; Chen Y; Ning X; Sun Q; Shu H; Coatrieux JL
    Med Phys; 2016 May; 43(5):2174. PubMed ID: 27147329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets.
    Cha KH; Hadjiiski L; Samala RK; Chan HP; Caoili EM; Cohan RH
    Med Phys; 2016 Apr; 43(4):1882. PubMed ID: 27036584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.