These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 29994054)
1. Quantitative Assessment for Self-Tracking of Acute Stress Based on Triangulation Principle in a Wearable Sensor System. Wu W; Pirbhulal S; Zhang H; Mukhopadhyay SC IEEE J Biomed Health Inform; 2019 Mar; 23(2):703-713. PubMed ID: 29994054 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of an Integrated System of Wearable Physiological Sensors for Stress Monitoring in Working Environments by Using Biological Markers. Betti S; Lova RM; Rovini E; Acerbi G; Santarelli L; Cabiati M; Del Ry S; Cavallo F IEEE Trans Biomed Eng; 2018 Aug; 65(8):1748-1758. PubMed ID: 29989933 [TBL] [Abstract][Full Text] [Related]
3. Stressing the accuracy: Wrist-worn wearable sensor validation over different conditions. Menghini L; Gianfranchi E; Cellini N; Patron E; Tagliabue M; Sarlo M Psychophysiology; 2019 Nov; 56(11):e13441. PubMed ID: 31332802 [TBL] [Abstract][Full Text] [Related]
4. Integrated mental stress smartwatch based on sweat cortisol and HRV sensors. Ding Y; Tan K; Sheng L; Ren H; Su Z; Yang H; Zhang X; Li J; Hu P Biosens Bioelectron; 2024 Dec; 265():116691. PubMed ID: 39182413 [TBL] [Abstract][Full Text] [Related]
5. Development and evaluation of an ambulatory stress monitor based on wearable sensors. Choi J; Ahmed B; Gutierrez-Osuna R IEEE Trans Inf Technol Biomed; 2012 Mar; 16(2):279-86. PubMed ID: 21965215 [TBL] [Abstract][Full Text] [Related]
6. Salivary cortisol level, salivary flow rate, and masticatory muscle activity in response to acute mental stress: a comparison between aged and young women. Bakke M; Tuxen A; Thomsen CE; Bardow A; Alkjaer T; Jensen BR Gerontology; 2004; 50(6):383-92. PubMed ID: 15477699 [TBL] [Abstract][Full Text] [Related]
7. Methodological considerations in calculating heart rate variability based on wearable device heart rate samples. Chen HK; Hu YF; Lin SF Comput Biol Med; 2018 Nov; 102():396-401. PubMed ID: 30177403 [TBL] [Abstract][Full Text] [Related]
8. Cluster-based analysis for personalized stress evaluation using physiological signals. Xu Q; Nwe TL; Guan C IEEE J Biomed Health Inform; 2015 Jan; 19(1):275-81. PubMed ID: 25561450 [TBL] [Abstract][Full Text] [Related]
9. Fusion of heart rate variability and salivary cortisol for stress response identification based on adverse childhood experience. Aimie-Salleh N; Malarvili MB; Whittaker AC Med Biol Eng Comput; 2019 Jun; 57(6):1229-1245. PubMed ID: 30734153 [TBL] [Abstract][Full Text] [Related]
10. Cortisol is significantly correlated with cardiovascular responses during high levels of stress in critical care personnel. Looser RR; Metzenthin P; Helfricht S; Kudielka BM; Loerbroks A; Thayer JF; Fischer JE Psychosom Med; 2010 Apr; 72(3):281-9. PubMed ID: 20190125 [TBL] [Abstract][Full Text] [Related]
11. Stress Detection Using Wearable Physiological and Sociometric Sensors. Mozos OM; Sandulescu V; Andrews S; Ellis D; Bellotto N; Dobrescu R; Ferrandez JM Int J Neural Syst; 2017 Mar; 27(2):1650041. PubMed ID: 27440466 [TBL] [Abstract][Full Text] [Related]
12. Towards mental stress detection using wearable physiological sensors. Wijsman J; Grundlehner B; Liu H; Hermens H; Penders J Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1798-801. PubMed ID: 22254677 [TBL] [Abstract][Full Text] [Related]
13. Toward Hypertension Prediction Based on PPG-Derived HRV Signals: a Feasibility Study. Lan KC; Raknim P; Kao WF; Huang JH J Med Syst; 2018 Apr; 42(6):103. PubMed ID: 29680866 [TBL] [Abstract][Full Text] [Related]
14. Modeling perceived stress via HRV and accelerometer sensor streams. Wu M; Cao H; Nguyen HL; Surmacz K; Hargrove C Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1625-8. PubMed ID: 26736586 [TBL] [Abstract][Full Text] [Related]
15. Psychological and Physiological Markers of Stress in Concussed Athletes Across Recovery Milestones. Hutchison MG; Mainwaring L; Senthinathan A; Churchill N; Thomas S; Richards D J Head Trauma Rehabil; 2017; 32(3):E38-E48. PubMed ID: 27603761 [TBL] [Abstract][Full Text] [Related]
16. Prenatal stress assessment using heart rate variability and salivary cortisol: A machine learning-based approach. Cao R; Rahmani AM; Lindsay KL PLoS One; 2022; 17(9):e0274298. PubMed ID: 36084123 [TBL] [Abstract][Full Text] [Related]
17. The physiological response in patients with acute myocardial infarction to the administration of psychological instruments. Cherrington CC; Moser DK; Lennie TA Biol Res Nurs; 2002 Oct; 4(2):85-91. PubMed ID: 12408214 [TBL] [Abstract][Full Text] [Related]
18. The effect of stress on salivary cortisol in panic disorder patients. Stones A; Groome D; Perry D; Hucklebridge F; Evans P J Affect Disord; 1999; 52(1-3):197-201. PubMed ID: 10357033 [TBL] [Abstract][Full Text] [Related]
19. One-Channel Wearable Mental Stress State Monitoring System. Abdul Kader L; Al-Shargie F; Tariq U; Al-Nashash H Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205067 [TBL] [Abstract][Full Text] [Related]
20. Association between changes in heart rate variability during the anticipation of a stressful situation and the stress-induced cortisol response. Pulopulos MM; Vanderhasselt MA; De Raedt R Psychoneuroendocrinology; 2018 Aug; 94():63-71. PubMed ID: 29758470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]