These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29994069)

  • 21. Analysis of energy-based algorithms for RNA secondary structure prediction.
    Hajiaghayi M; Condon A; Hoos HH
    BMC Bioinformatics; 2012 Feb; 13():22. PubMed ID: 22296803
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family.
    Sharma P; Mitra A; Sharma S; Singh H; Bhattacharyya D
    J Biomol Struct Dyn; 2008 Jun; 25(6):709-32. PubMed ID: 18399704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops.
    Vecenie CJ; Morrow CV; Zyra A; Serra MJ
    Biochemistry; 2006 Feb; 45(5):1400-7. PubMed ID: 16445282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inclusion of methoxy groups inverts the thermodynamic stabilities of DNA-RNA hybrid duplexes: A molecular dynamics simulation study.
    Suresh G; Priyakumar UD
    J Mol Graph Model; 2015 Sep; 61():150-9. PubMed ID: 26254870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescence competition assay measurements of free energy changes for RNA pseudoknots.
    Liu B; Shankar N; Turner DH
    Biochemistry; 2010 Jan; 49(3):623-34. PubMed ID: 19921809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The nearest neighbor and next nearest neighbor effects on the thermodynamic and kinetic properties of RNA base pair.
    Wang Y; Wang Z; Wang Y; Liu T; Zhang W
    J Chem Phys; 2018 Jan; 148(4):045101. PubMed ID: 29390847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequence dependence of stability for coaxial stacking of RNA helixes with Watson-Crick base paired interfaces.
    Walter AE; Turner DH
    Biochemistry; 1994 Oct; 33(42):12715-9. PubMed ID: 7522562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An algebraic model of RNA duplex formation.
    Bashford JD; Jarvis PD
    Biopolymers; 2004 Apr; 73(6):657-67. PubMed ID: 15048769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A sensitivity analysis of RNA folding nearest neighbor parameters identifies a subset of free energy parameters with the greatest impact on RNA secondary structure prediction.
    Zuber J; Sun H; Zhang X; McFadyen I; Mathews DH
    Nucleic Acids Res; 2017 Jun; 45(10):6168-6176. PubMed ID: 28334976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phylogenetic and Chemical Probing Information as Soft Constraints in RNA Secondary Structure Prediction.
    von Löhneysen S; Spicher T; Varenyk Y; Yao HT; Lorenz R; Hofacker I; Stadler PF
    J Comput Biol; 2024 Jun; 31(6):549-563. PubMed ID: 38935442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coarse-grained simulations of RNA and DNA duplexes.
    Cragnolini T; Derreumaux P; Pasquali S
    J Phys Chem B; 2013 Jul; 117(27):8047-60. PubMed ID: 23730911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermodynamic characterization of RNA duplexes containing naturally occurring 1 x 2 nucleotide internal loops.
    Badhwar J; Karri S; Cass CK; Wunderlich EL; Znosko BM
    Biochemistry; 2007 Dec; 46(50):14715-24. PubMed ID: 18020450
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Testing the nearest neighbor model for canonical RNA base pairs: revision of GU parameters.
    Chen JL; Dishler AL; Kennedy SD; Yildirim I; Liu B; Turner DH; Serra MJ
    Biochemistry; 2012 Apr; 51(16):3508-22. PubMed ID: 22490167
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free energy minimization to predict RNA secondary structures and computational RNA design.
    Churkin A; Weinbrand L; Barash D
    Methods Mol Biol; 2015; 1269():3-16. PubMed ID: 25577369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stacking Free Energies of All DNA and RNA Nucleoside Pairs and Dinucleoside-Monophosphates Computed Using Recently Revised AMBER Parameters and Compared with Experiment.
    Brown RF; Andrews CT; Elcock AH
    J Chem Theory Comput; 2015 May; 11(5):2315-28. PubMed ID: 26574427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamic heuristics with case-based reasoning: combined insights for RNA pseudoknot secondary structure.
    Al-Khatib RM; Rashid NA; Abdullah R
    J Biomol Struct Dyn; 2011 Aug; 29(1):1-26. PubMed ID: 21696223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bistable secondary structures of small RNAs and their structural probing by comparative imino proton NMR spectroscopy.
    Höbartner C; Micura R
    J Mol Biol; 2003 Jan; 325(3):421-31. PubMed ID: 12498793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. bpRNA: large-scale automated annotation and analysis of RNA secondary structure.
    Danaee P; Rouches M; Wiley M; Deng D; Huang L; Hendrix D
    Nucleic Acids Res; 2018 Jun; 46(11):5381-5394. PubMed ID: 29746666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational model for predicting experimental RNA and DNA nearest-neighbor free energy rankings.
    Johnson CA; Bloomingdale RJ; Ponnusamy VE; Tillinghast CA; Znosko BM; Lewis M
    J Phys Chem B; 2011 Jul; 115(29):9244-51. PubMed ID: 21619071
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermodynamic characterization of RNA 2 × 3 nucleotide internal loops.
    Hausmann NZ; Znosko BM
    Biochemistry; 2012 Jul; 51(26):5359-68. PubMed ID: 22720720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.