These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 29994079)
1. Unification of MAP Estimation and Marginal Inference in Recurrent Neural Networks. Yu Z; Chen F; Deng F IEEE Trans Neural Netw Learn Syst; 2018 Nov; 29(11):5761-5766. PubMed ID: 29994079 [TBL] [Abstract][Full Text] [Related]
2. Probabilistic inference of binary Markov random fields in spiking neural networks through mean-field approximation. Zheng Y; Jia S; Yu Z; Huang T; Liu JK; Tian Y Neural Netw; 2020 Jun; 126():42-51. PubMed ID: 32197212 [TBL] [Abstract][Full Text] [Related]
3. Marginal Bayesian Posterior Inference using Recurrent Neural Networks with Application to Sequential Models. Fisher T; Luedtke A; Carone M; Simon N Stat Sin; 2023 May; 33(SI):1507-1532. PubMed ID: 37409184 [TBL] [Abstract][Full Text] [Related]
4. Bayesian Inference and Online Learning in Poisson Neuronal Networks. Huang Y; Rao RP Neural Comput; 2016 Aug; 28(8):1503-26. PubMed ID: 27348304 [TBL] [Abstract][Full Text] [Related]
6. Dynamical Mechanism of Sampling-Based Probabilistic Inference Under Probabilistic Population Codes. Ichikawa K; Kataoka A Neural Comput; 2022 Feb; 34(3):804-827. PubMed ID: 35026031 [TBL] [Abstract][Full Text] [Related]
7. Emergent Inference of Hidden Markov Models in Spiking Neural Networks Through Winner-Take-All. Yu Z; Guo S; Deng F; Yan Q; Huang K; Liu JK; Chen F IEEE Trans Cybern; 2020 Mar; 50(3):1347-1354. PubMed ID: 30295641 [TBL] [Abstract][Full Text] [Related]
8. Model Selection and Parameter Inference in Phylogenetics Using Nested Sampling. Russel PM; Brewer BJ; Klaere S; Bouckaert RR Syst Biol; 2019 Mar; 68(2):219-233. PubMed ID: 29961836 [TBL] [Abstract][Full Text] [Related]
9. Bayesian inference with probabilistic population codes. Ma WJ; Beck JM; Latham PE; Pouget A Nat Neurosci; 2006 Nov; 9(11):1432-8. PubMed ID: 17057707 [TBL] [Abstract][Full Text] [Related]
10. Efficient probabilistic inference in generic neural networks trained with non-probabilistic feedback. Orhan AE; Ma WJ Nat Commun; 2017 Jul; 8(1):138. PubMed ID: 28743932 [TBL] [Abstract][Full Text] [Related]
11. On the relationship between deterministic and probabilistic directed Graphical models: from Bayesian networks to recursive neural networks. Baldi P; Rosen-Zvi M Neural Netw; 2005 Oct; 18(8):1080-6. PubMed ID: 16157470 [TBL] [Abstract][Full Text] [Related]
13. Hierarchical Bayesian Inference and Learning in Spiking Neural Networks. Guo S; Yu Z; Deng F; Hu X; Chen F IEEE Trans Cybern; 2019 Jan; 49(1):133-145. PubMed ID: 29990165 [TBL] [Abstract][Full Text] [Related]
14. Bayesian Estimation and Inference Using Stochastic Electronics. Thakur CS; Afshar S; Wang RM; Hamilton TJ; Tapson J; van Schaik A Front Neurosci; 2016; 10():104. PubMed ID: 27047326 [TBL] [Abstract][Full Text] [Related]
15. A Novel Predictive-Coding-Inspired Variational RNN Model for Online Prediction and Recognition. Ahmadi A; Tani J Neural Comput; 2019 Nov; 31(11):2025-2074. PubMed ID: 31525309 [TBL] [Abstract][Full Text] [Related]
16. On Bayesian estimation of marginal structural models. Saarela O; Stephens DA; Moodie EE; Klein MB Biometrics; 2015 Jun; 71(2):279-88. PubMed ID: 25677103 [TBL] [Abstract][Full Text] [Related]
17. Learning dynamical systems by recurrent neural networks from orbits. Kimura M; Nakano R Neural Netw; 1998 Dec; 11(9):1589-1599. PubMed ID: 12662730 [TBL] [Abstract][Full Text] [Related]