These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29994097)

  • 1. Controllability Analysis of A Gene Network for Arabidopsis thaliana Reveals Characteristics of Functional Gene Families.
    Wang P; Wang D; Lu J
    IEEE/ACM Trans Comput Biol Bioinform; 2018 Mar; ():. PubMed ID: 29994097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Biomarker in Brain-specific Gene Regulatory Network Using Structural Controllability Analysis.
    Chen Z; Chen S; Qiang X
    Front Bioinform; 2022; 2():812314. PubMed ID: 36304271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana.
    Liu S; Lv Z; Liu Y; Li L; Zhang L
    Genet Mol Biol; 2018 Jul/Sept.; 41(3):624-637. PubMed ID: 30044467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WRKY transcription factors: key components in abscisic acid signalling.
    Rushton DL; Tripathi P; Rabara RC; Lin J; Ringler P; Boken AK; Langum TJ; Smidt L; Boomsma DD; Emme NJ; Chen X; Finer JJ; Shen QJ; Rushton PJ
    Plant Biotechnol J; 2012 Jan; 10(1):2-11. PubMed ID: 21696534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analyses of stress-responsive genes in Arabidopsis thaliana: insight from genomic data mining, functional enrichment, pathway analysis and phenomics.
    Naika M; Shameer K; Sowdhamini R
    Mol Biosyst; 2013 Jul; 9(7):1888-908. PubMed ID: 23645342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic analyses of the interaction between abscisic acid and gibberellins in the control of leaf development in Arabidopsis thaliana.
    Chiang MH; Shen HL; Cheng WH
    Plant Sci; 2015 Jul; 236():260-71. PubMed ID: 26025539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets.
    Vinayagam A; Gibson TE; Lee HJ; Yilmazel B; Roesel C; Hu Y; Kwon Y; Sharma A; Liu YY; Perrimon N; Barabási AL
    Proc Natl Acad Sci U S A; 2016 May; 113(18):4976-81. PubMed ID: 27091990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GhWRKY1-like, a WRKY transcription factor, mediates drought tolerance in Arabidopsis via modulating ABA biosynthesis.
    Hu Q; Ao C; Wang X; Wu Y; Du X
    BMC Plant Biol; 2021 Oct; 21(1):458. PubMed ID: 34625048
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Ma Q; Xia Z; Cai Z; Li L; Cheng Y; Liu J; Nian H
    Front Plant Sci; 2018; 9():1979. PubMed ID: 30740122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors.
    Ă–sterlund T; Bordel S; Nielsen J
    Integr Biol (Camb); 2015 May; 7(5):560-8. PubMed ID: 25855217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide- induced AtAO3 differentially regulates plant defense and drought tolerance in Arabidopsis thaliana.
    Khan M; Imran QM; Shahid M; Mun BG; Lee SU; Khan MA; Hussain A; Lee IJ; Yun BW
    BMC Plant Biol; 2019 Dec; 19(1):602. PubMed ID: 31888479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic network analyses of leaf dehydration responses identify highly connected ABA and ethylene signaling hubs in three grapevine species differing in drought tolerance.
    Hopper DW; Ghan R; Schlauch KA; Cramer GR
    BMC Plant Biol; 2016 May; 16(1):118. PubMed ID: 27215785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional profiling of genes responsive to abscisic acid and gibberellin in rice: phenotyping and comparative analysis between rice and Arabidopsis.
    Yazaki J; Shimatani Z; Hashimoto A; Nagata Y; Fujii F; Kojima K; Suzuki K; Taya T; Tonouchi M; Nelson C; Nakagawa A; Otomo Y; Murakami K; Matsubara K; Kawai J; Carninci P; Hayashizaki Y; Kikuchi S
    Physiol Genomics; 2004 Apr; 17(2):87-100. PubMed ID: 14982972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic analysis of poco1, a mitochondrial pentatricopeptide repeat protein mutant in Arabidopsis thaliana.
    Emami H; Kumar A; Kempken F
    BMC Plant Biol; 2020 May; 20(1):209. PubMed ID: 32397956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid.
    An YQ; Lin L
    BMC Plant Biol; 2011 Jun; 11():105. PubMed ID: 21668981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A transcriptional dynamic network during Arabidopsis thaliana pollen development.
    Wang J; Qiu X; Li Y; Deng Y; Shi T
    BMC Syst Biol; 2011; 5 Suppl 3(Suppl 3):S8. PubMed ID: 22784627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory network rewiring for secondary metabolism in Arabidopsis thaliana under various conditions.
    Lv Q; Cheng R; Shi T
    BMC Plant Biol; 2014 Jul; 14():180. PubMed ID: 24993737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of robustness of interdependent network controllability by redundant design.
    Zhang Z; Yin Y; Zhang X; Liu L
    PLoS One; 2018; 13(2):e0192874. PubMed ID: 29438426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of drought responsive Elaeis guineensis WRKY transcription factors with sensitivity to other abiotic stresses and hormone treatments.
    Lee FC; Yeap WC; Appleton DR; Ho CL; Kulaveerasingam H
    BMC Genomics; 2022 Feb; 23(1):164. PubMed ID: 35219299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors.
    Huang D; Wu W; Abrams SR; Cutler AJ
    J Exp Bot; 2008; 59(11):2991-3007. PubMed ID: 18552355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.