These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29994124)

  • 1. Prediction of Optimal Facial Electromyographic Sensor Configurations for Human-Machine Interface Control.
    Vojtech JM; Cler GJ; Stepp CE
    IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1566-1576. PubMed ID: 29994124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrete Versus Continuous Mapping of Facial Electromyography for Human-Machine Interface Control: Performance and Training Effects.
    Cler GJ; Stepp CE
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):572-80. PubMed ID: 25616053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrete vs. continuous surface electromyographic interface control.
    Cler MJ; Michener CM; Stepp CE
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4374-7. PubMed ID: 25570961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal placement of bipolar surface EMG electrodes in the face based on single motor unit analysis.
    Lapatki BG; Oostenveld R; Van Dijk JP; Jonas IE; Zwarts MJ; Stegeman DF
    Psychophysiology; 2010 Mar; 47(2):299-314. PubMed ID: 20003170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of facial electromyography in computer mouse access for people with disabilities.
    Huang CN; Chen CH; Chung HY
    Disabil Rehabil; 2006 Feb; 28(4):231-7. PubMed ID: 16467058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facial muscle activation patterns in healthy male humans: a multi-channel surface EMG study.
    Schumann NP; Bongers K; Guntinas-Lichius O; Scholle HC
    J Neurosci Methods; 2010 Mar; 187(1):120-8. PubMed ID: 20064556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional cursor-to-target control from single muscle site sEMG signals.
    Perez-Maldonado C; Wexler AS; Joshi SS
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):203-9. PubMed ID: 20071278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated electromyogram and eye-gaze tracking cursor control system for computer users with motor disabilities.
    Chin CA; Barreto A; Cremades JG; Adjouadi M
    J Rehabil Res Dev; 2008; 45(1):161-74. PubMed ID: 18566935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface electromyographic control of a novel phonemic interface for speech synthesis.
    Cler GJ; Nieto-Castañón A; Guenther FH; Fager SK; Stepp CE
    Augment Altern Commun; 2016 Jun; 32(2):120-30. PubMed ID: 27141992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain-muscle-computer interface: mobile-phone prototype development and testing.
    Vernon S; Joshi SS
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):531-8. PubMed ID: 21571616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrode position optimization for facial EMG measurements for human-computer interface.
    Nöjd N; Hannula M; Narra N; Hyttinen J
    Methods Inf Med; 2008; 47(3):192-7. PubMed ID: 18473083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The integration of electromyogram and eye gaze tracking inputs for hands-free cursor control.
    Chin CA; Barreto A
    Biomed Sci Instrum; 2007; 43():152-7. PubMed ID: 17487073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface electromyographic control of speech synthesis.
    Cler MJ; Nieto-Castanon A; Guenther FH; Stepp CE
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5848-51. PubMed ID: 25571326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fused ultrasound and electromyography-driven neuromuscular model to improve plantarflexion moment prediction across walking speeds.
    Zhang Q; Fragnito N; Franz JR; Sharma N
    J Neuroeng Rehabil; 2022 Aug; 19(1):86. PubMed ID: 35945600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A thin, flexible multielectrode grid for high-density surface EMG.
    Lapatki BG; Van Dijk JP; Jonas IE; Zwarts MJ; Stegeman DF
    J Appl Physiol (1985); 2004 Jan; 96(1):327-36. PubMed ID: 12972436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of distal EMG signals using a wearable device for reading facial expressions.
    Gruebler A; Suzuki K
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4594-7. PubMed ID: 21096225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of sEMG sensors and algorithms for silent speech recognition.
    Meltzner GS; Heaton JT; Deng Y; De Luca G; Roy SH; Kline JC
    J Neural Eng; 2018 Aug; 15(4):046031. PubMed ID: 29855428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An SEMG computer interface using three myoelectric sites for proportional two-dimensional cursor motion control and clicking for individuals with spinal cord injuries.
    Choi C; Na Y; Rim B; Kim Y; Kang S; Kim J
    Med Eng Phys; 2013 Jun; 35(6):777-83. PubMed ID: 22939517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Similarities and disparities between visual analysis and high-resolution electromyography of facial expressions.
    Gat L; Gerston A; Shikun L; Inzelberg L; Hanein Y
    PLoS One; 2022; 17(2):e0262286. PubMed ID: 35192638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing Surface and Intramuscular Electromyography for Simultaneous and Proportional Control Based on a Musculoskeletal Model: A Pilot Study.
    Crouch DL; Pan L; Filer W; Stallings JW; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1735-1744. PubMed ID: 30047893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.