These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29994124)

  • 21. Enhanced hybrid electromyogram/Eye Gaze Tracking cursor control system for hands-free computer interaction.
    Chin CA; Barreto A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2296-9. PubMed ID: 17946102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recognition of Intensive Valence and Arousal Affective States via Facial Electromyographic Activity in Young and Senior Adults.
    Tan JW; Andrade AO; Li H; Walter S; Hrabal D; Rukavina S; Limbrecht-Ecklundt K; Hoffman H; Traue HC
    PLoS One; 2016; 11(1):e0146691. PubMed ID: 26761427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of muscle fatigue on the usability of a myoelectric human-computer interface.
    Barszap AG; Skavhaug IM; Joshi SS
    Hum Mov Sci; 2016 Oct; 49():225-38. PubMed ID: 27455381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards optimizing electrode configurations for silent speech recognition based on high-density surface electromyography.
    Zhu M; Zhang H; Wang X; Wang X; Yang Z; Wang C; Samuel OW; Chen S; Li G
    J Neural Eng; 2021 Jan; 18(1):. PubMed ID: 33181497
    [No Abstract]   [Full Text] [Related]  

  • 25. Development of recommendations for SEMG sensors and sensor placement procedures.
    Hermens HJ; Freriks B; Disselhorst-Klug C; Rau G
    J Electromyogr Kinesiol; 2000 Oct; 10(5):361-74. PubMed ID: 11018445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human facial neural activities and gesture recognition for machine-interfacing applications.
    Hamedi M; Salleh ShH; Tan TS; Ismail K; Ali J; Dee-Uam C; Pavaganun C; Yupapin PP
    Int J Nanomedicine; 2011; 6():3461-72. PubMed ID: 22267930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationship between grasping force and features of single-channel intramuscular EMG signals.
    Kamavuako EN; Farina D; Yoshida K; Jensen W
    J Neurosci Methods; 2009 Dec; 185(1):143-50. PubMed ID: 19747943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of the input equipment for a computer using surface EMG.
    Ando K; Nagata K; Kitagawa D; Shibata N; Yamada M; Magatani K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1331-4. PubMed ID: 17945635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hands-free human computer interaction via an electromyogram-based classification algorithm.
    Chin C; Barreto A; Li C; Zhai J
    Biomed Sci Instrum; 2005; 41():31-6. PubMed ID: 15850078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Technology and instrumentation for detection and conditioning of the surface electromyographic signal: state of the art.
    Merletti R; Botter A; Troiano A; Merlo E; Minetto MA
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):122-34. PubMed ID: 19042063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. sEMG-assisted inverse modelling of 3D lip movement: a feasibility study towards person-specific modelling.
    Eskes M; Balm AJM; van Alphen MJA; Smeele LE; Stavness I; van der Heijden F
    Sci Rep; 2017 Dec; 7(1):17729. PubMed ID: 29255198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated Head-Tilt and Electromyographic Cursor Control.
    Vojtech JM; Hablani S; Cler GJ; Stepp CE
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jun; 28(6):1442-1451. PubMed ID: 32286998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Paralyzed subject controls telepresence mobile robot using novel sEMG brain-computer interface: case study.
    Lyons KR; Joshi SS
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650428. PubMed ID: 24187246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human-machine interfaces based on EMG and EEG applied to robotic systems.
    Ferreira A; Celeste WC; Cheein FA; Bastos-Filho TF; Sarcinelli-Filho M; Carelli R
    J Neuroeng Rehabil; 2008 Mar; 5():10. PubMed ID: 18366775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A surface EMG electrode for the simultaneous observation of multiple facial muscles.
    Lapatki BG; Stegeman DF; Jonas IE
    J Neurosci Methods; 2003 Mar; 123(2):117-28. PubMed ID: 12606061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proportional estimation of finger movements from high-density surface electromyography.
    Celadon N; Došen S; Binder I; Ariano P; Farina D
    J Neuroeng Rehabil; 2016 Aug; 13(1):73. PubMed ID: 27488270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes.
    Biagetti G; Crippa P; Falaschetti L; Orcioni S; Turchetti C
    Biomed Eng Online; 2018 Nov; 17(Suppl 1):132. PubMed ID: 30458783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of vibrotactile feedback on an EMG-based proportional cursor control system.
    Li S; Chen X; Zhang D; Sheng X; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3070-3. PubMed ID: 24110376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing interoperability between video-oculographic and electromyographic systems.
    Navallas J; Ariz M; Villanueva A; San Agustín J; Cabeza R
    J Rehabil Res Dev; 2011; 48(3):253-65. PubMed ID: 21480100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting 3D lip shapes using facial surface EMG.
    Eskes M; van Alphen MJ; Balm AJ; Smeele LE; Brandsma D; van der Heijden F
    PLoS One; 2017; 12(4):e0175025. PubMed ID: 28406945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.