These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29994156)

  • 1. Chromatin 3D Reconstruction from Chromosomal Contacts Using a Genetic Algorithm.
    Kapilevich V; Seno S; Matsuda H; Takenaka Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1620-1626. PubMed ID: 29994156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Genome Reconstruction with ShRec3D+ and Hi-C Data.
    Li J; Zhang W; Li X
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):460-468. PubMed ID: 26955049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D genome reconstruction from chromosomal contacts.
    Lesne A; Riposo J; Roger P; Cournac A; Mozziconacci J
    Nat Methods; 2014 Nov; 11(11):1141-3. PubMed ID: 25240436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale 3D chromatin reconstruction from chromosomal contacts.
    Zhang Y; Liu W; Lin Y; Ng YK; Li S
    BMC Genomics; 2019 Apr; 20(Suppl 2):186. PubMed ID: 30967119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of 3D genome architecture via a two-stage algorithm.
    Segal MR; Bengtsson HL
    BMC Bioinformatics; 2015 Nov; 16():373. PubMed ID: 26553003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin 3D structure reconstruction with consideration of adjacency relationship among genomic loci.
    Li FZ; Liu ZE; Li XY; Bu LM; Bu HX; Liu H; Zhang CM
    BMC Bioinformatics; 2020 Jul; 21(1):272. PubMed ID: 32611376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 3D Organization of Chromatin Colors in Mammalian Nuclei.
    Carron L; Morlot JB; Lesne A; Mozziconacci J
    Methods Mol Biol; 2022; 2301():317-336. PubMed ID: 34415544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosome Three-Dimensional Structure Reconstruction: An Iterative ShRec3D Algorithm.
    Li FZ; Zhang XF; Cai HY; Ran LQ; Zhou HY; Liu ZE
    J Comput Biol; 2023 May; 30(5):575-587. PubMed ID: 36847350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manifold Based Optimization for Single-Cell 3D Genome Reconstruction.
    Paulsen J; Gramstad O; Collas P
    PLoS Comput Biol; 2015 Aug; 11(8):e1004396. PubMed ID: 26262780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors.
    Serra F; Baù D; Goodstadt M; Castillo D; Filion GJ; Marti-Renom MA
    PLoS Comput Biol; 2017 Jul; 13(7):e1005665. PubMed ID: 28723903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation and comparison of methods for recapitulation of 3D spatial chromatin structures.
    Park J; Lin S
    Brief Bioinform; 2019 Jul; 20(4):1205-1214. PubMed ID: 29091999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ChromoTrace: Computational reconstruction of 3D chromosome configurations for super-resolution microscopy.
    Barton C; Morganella S; Ødegård-Fougner Ø; Alexander S; Ries J; Fitzgerald T; Ellenberg J; Birney E
    PLoS Comput Biol; 2018 Mar; 14(3):e1006002. PubMed ID: 29522506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technical Review: A Hitchhiker's Guide to Chromosome Conformation Capture.
    Grob S; Cavalli G
    Methods Mol Biol; 2018; 1675():233-246. PubMed ID: 29052195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data.
    MacKay K; Kusalik A
    Brief Funct Genomics; 2020 Jul; 19(4):292-308. PubMed ID: 32353112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.
    Szałaj P; Tang Z; Michalski P; Pietal MJ; Luo OJ; Sadowski M; Li X; Radew K; Ruan Y; Plewczynski D
    Genome Res; 2016 Dec; 26(12):1697-1709. PubMed ID: 27789526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low Input Targeted Chromatin Capture (Low-T2C).
    Boltsis I; Nowosad K; Brouwer RWW; Tylzanowski P; van IJcken WFJ; Huylebroeck D; Grosveld F; Kolovos P
    Methods Mol Biol; 2021; 2351():165-179. PubMed ID: 34382189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing novel methods to image and visualize 3D genomes.
    Ma T; Chen L; Shi M; Niu J; Zhang X; Yang X; Zhanghao K; Wang M; Xi P; Jin D; Zhang M; Gao J
    Cell Biol Toxicol; 2018 Oct; 34(5):367-380. PubMed ID: 29577183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4Cin: A computational pipeline for 3D genome modeling and virtual Hi-C analyses from 4C data.
    Irastorza-Azcarate I; Acemel RD; Tena JJ; Maeso I; Gómez-Skarmeta JL; Devos DP
    PLoS Comput Biol; 2018 Mar; 14(3):e1006030. PubMed ID: 29522512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristic arrangement of nucleosomes is predictive of chromatin interactions at kilobase resolution.
    Zhang H; Li F; Jia Y; Xu B; Zhang Y; Li X; Zhang Z
    Nucleic Acids Res; 2017 Dec; 45(22):12739-12751. PubMed ID: 29036650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.